Economic Botany

, Volume 58, Supplement 1, pp S88–S100 | Cite as

Protection from uv radiation in the economic crop, Opuntia SPP.

  • Charles S.  Cockell
  • Joe Berry
  • Adrian Southern
  • Alesha Herrera
  • Charles Yackulic
Article

Abstract

Cacti of the genus puntia are an economically important crop. Understanding the mechanisms they possess to protect against UV radiation is important for assessing their possible response to climatic change. Measurements of the concentrations of UV-screening compounds and epidermal transmittance for two species of platyopuntia, Opuntia engelmannii Salm-Dyck. and O. phaeacantha Engelm. during 1998 and 1999 were used to investigate the UV-protection afforded by the cactus epidermis. A UV-radiative transfer model was used to investigate the interception of UV radiation on differently oriented surfaces. We show that vertical morphology itself confers significant protection against UV radiation compared to a horizontal surface. Concentrations of UV-screening flavonoids were found to vary depending on the UV exposure of different surfaces. West-facing surfaces had lower concentrations than east-facing surfaces, although theoretically they should be identical. This might be explained by the higher mean temperatures on west-facing surfaces. Although UV-absorbing soluble flavonoids in the epidermis block both UV-B and UV-A, the structure of the epidermis alone may be sufficient to remove up to 94% of the UV-B portion of the spectrum. These data yield insights into possible mechanisms of recent declines in cacti populations.

Key Words

Plants UV radiation desert cacti flavonoids 

Literature cited

  1. Badescu, V. 1998. Different strategies for maximum solar radiation collection. Acta Astronautica 43: 409–421.CrossRefGoogle Scholar
  2. Björn L. O., and T. M. Murphy. 1985. Computer calculation of solar ultraviolet radiation at ground level. Physiologie Végétale 23:555–561.Google Scholar
  3. Caldwell, M. M. 1981. Plant response to solar ultraviolet radiation. Pages 169–197 in O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Ziegler, eds., Physiological plant ecology, Vol. 12A. Springer-Verlag, Berlin, New York.Google Scholar
  4. Cannon, G. C, L. A. Hedrick, and S. Heinhorst. 1995. Repair mechanisms of UV-induced DNA damage in soybean chloroplasts. Plant Molecular Biology 29:1267–1277.PubMedCrossRefGoogle Scholar
  5. Conde, L. F. 1975. Anatomical comparisons of five species of Opuntia (Cactaceae). Annals of the Missouri Botanical Garden 62:425–473.CrossRefGoogle Scholar
  6. Darling, M. S. 1989. Epidermis and hypodermis of the Saguaro cactus (Cereus giganteus)—Anatomy and spectral properties. American Journal of Botany 76:1698–1706.CrossRefGoogle Scholar
  7. Day, T. A. 1993. Relating UV-B radiation screening effectiveness of foliage to absorbing-compound concentration and anatomical characteristics in a diverse group of plants. Oecologia 95:542–550.Google Scholar
  8. —, and P. J. Neale. 2002. Effects of UV-B radiation on terrestrial and aquatic primary producers. Annual Review of Ecology and Systematics 33:371–396.CrossRefGoogle Scholar
  9. Ehleringer, J., O. Bjorkman, and H. A. Mooney. 1976. Leaf pubescence: Effect of absorbance and photosynthesis in a desert shrub. Science 192:377.CrossRefGoogle Scholar
  10. —, H. A. Mooney, S. L. Gulmon, and P. Rundel. 1980. Orientation and its consequences for Copiapoa (Cactaceae) in the Atacama desert. Oecologia 46:63–67.CrossRefGoogle Scholar
  11. Evans, L. S., K. A. Howard, and E. J. Stolze. 1992. Epidermal browning of Saguaro cacti (Carnegiea gigantea)—Is it new or related to direction? Environmental and Experimental Botany 32:357–363.CrossRefGoogle Scholar
  12. J. H. Sullivan, and M. Lim. 2001. Initial effects of UV-B radiation on stem surfaces of Stenocereus thurberi (organ pipe cacti). Environmental and Experimental Botany 46:181–187.CrossRefGoogle Scholar
  13. Faragher, J. D. 1983. Temperature regulation of anthocyanin accumulation in apple skin. Journal of Experimental Botany 34:1291–1298.CrossRefGoogle Scholar
  14. Flint, S. D., P. W. Jordan, and M. M. Caldwell. 1985. Plant protective response to enhanced UV-B radiation under field conditions: Leaf optical properties and photosynthesis. Photochemistry and Photobiology 41:95–99.CrossRefGoogle Scholar
  15. Garcia de Cortazar, V., and P. S. Nobel. 1986. Modeling of PAR interception and productivity of a prickly pear cactus, Opuntia ficus-indica L., at various spacings. Agronomy Journal 78:80–85.CrossRefGoogle Scholar
  16. Gibbs, J. G., and D. T. Patten. 1970. Plant temperatures and heat flux in a Sonoran desert ecosystem. Oecologia 5:165–184.CrossRefGoogle Scholar
  17. Green, A. E. S., K. R. Cross, and L. A. Smith. 1980. Improved analytical characterization of ultraviolet skylight. Photochemistry and Photobiology 31:59–65.CrossRefGoogle Scholar
  18. Haberle, R. M., C. P. McKay, J. B. Pollack, O. E. Gwynne, D. H. Atkinson, J. Appelbaum, G. A. Landis, R. W. Zurek, and D. J. Flood. 1993. Atmospheric effects on the utility of solar power on Mars. Pages 845–885 in J. S. Lewis, M. S. Mathews, and M. L. Guerrieri, eds., Resources of nearearth space. University of Arizona Press, Tucson.Google Scholar
  19. Joseph, J. H., W. J. Wiscombe, and J. A. Weinman. 1976. The delta-Eddington approximation for radiative transfer flux. Journal of Atmospheric Science 28:833–837.Google Scholar
  20. Karabourniotis, G., K. Papadopoulos, M. Papamarkou, and Y. Manetas. 1992. Ultraviolet-B radiation absorbing capacity of leaf hairs. Physiologia Plantarum 86:414–418.CrossRefGoogle Scholar
  21. Krizek, D. T., R. M. Mirecki, and S. J. Britz. 1997. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cucumber. Physiologia Plantarum 100:886–893.CrossRefGoogle Scholar
  22. Lajtha, K., K. Kolberg, and J. Getz. 1997. Ecophysiology of the saguaro cactus (Carnegiea gigantea) in the Saguaro National Monument: Relationship to symptoms of decline. Journal of Arid Environments 36:579–590.CrossRefGoogle Scholar
  23. Larson, R. A., W. J. Garrison, and R. W. Carlson. 1990. Differential responses of alpine and non-alpine Aquilegia species to increased ultraviolet-B radiation. Plant Cell and Environment 13:983–987.CrossRefGoogle Scholar
  24. McLennan, A. G. 1987. The repair of ultraviolet light induced DNA damage in plant cells. Mutation Research 181:1–7.Google Scholar
  25. Mohle, B., and E. Wellmann. 1982. Induction of phenylpropanoid compounds by UV-B irradiation in roots of seedlings and cell cultures from Dill (Anethum graveolens L.). Plant Cell Reports 1: 183–185.CrossRefGoogle Scholar
  26. Nobel, P. S. 1978. Surface temperatures of cacti—linfluence of environmental and morphological factors. Ecology 59:986–996.CrossRefGoogle Scholar
  27. — 1980. Interception of photosynthetically active radiation by cacti of different morphology. Oecologia 45:160–166.CrossRefGoogle Scholar
  28. — 1981. Influences of photosynthetically active radiation on cladodes orientation, stem tilting, and height of cacti. Ecology 62:982–990.CrossRefGoogle Scholar
  29. — 1982. Orientation of terminal cladodes of platyopuntias. Botanical Gazette 143:219–224.CrossRefGoogle Scholar
  30. — 1984. Extreme temperatures and thermal tolerances of seedlings of desert succulents. Oecologia 62:310–317.CrossRefGoogle Scholar
  31. Omori, Y., H. Takayama, and H. Ohba. 2000. Selective light transmittance of translucent bracts in the Himalayan giant glasshouse plant Rheum nobile Hook.f. & Thomson (Polygonaceae). Botanical Journal of the Linnean Society 132:19–27.Google Scholar
  32. Quaite, F. E., B. M. Sutherland, and J. D. Sutherland. 1992. Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion. Nature 358:576–578.CrossRefGoogle Scholar
  33. Robberecht, R., and M. M. Caldwell. 1978. Leaf epidermal transmittance of ultraviolet radiation and its implications for plant sensitivity to ultraviolet-radiation induced injury. Oecologia 32:277–287.CrossRefGoogle Scholar
  34. —, and W. D. Billings. 1980. Leaf ultraviolet optical properties along a latitudinal gradient in the arctic-alpine life zone. Ecology 61: 612–619.CrossRefGoogle Scholar
  35. Schmelzer, E., W. Jahnen, and K. Hahlbrook. 1998. In situ localization of light-induced chalcone synthase mRNA, chalcone synthase, and flavonoid end products in epidermal cells of parsley leaves. Proceedings of the National Academy of Sciences 85: 2989–2993.CrossRefGoogle Scholar
  36. Stapleton, A. E., C. S. Thronber, and V. Walbot. 1997. UV-B component of sunlight causes measurable damage in field-grown maize (Zea mays L.): Developmental and cellular heterogeneity of damage and repair. Plant Cell and Environment 20: 279–290.CrossRefGoogle Scholar
  37. Tevini, M., J. Braun, and G. Fieser. 1991. The protective function of the epidermal layer of rye seedlings against UV-B radiation. Photochemistry and Photobiology 53:329–333.CrossRefGoogle Scholar
  38. Van de Staaij, J. W. M., W. H. O. Ernst, W. J. Hakvoort, and J. Rozema J. 1995. Ultraviolet-B (280-320 nm) absorbing pigments in the leaves of Silene vulgari: Their role in UV-B tolerance. Journal of Plant Physiology 147:75–80.Google Scholar
  39. Vogt, T., P. Gülz, and H. Reznik. 1991. UV radiation dependent flavonoid accumulation of Cistus laurifolius L. Zeitschrift fur Naturforschung 46c:37–42.Google Scholar
  40. Vu, C. V., L. H. Allen, and L. A. Garrard. 1981. Effects of supplemental UV-B radiation on growth and leaf photosynthetic reactions of soybean (ba]Glycine max). Physiologia Plantarum 52:353–362.CrossRefGoogle Scholar
  41. Walter, M. H. 1989. The induction of phenylpropanoid biosynthetic enzymes by ultraviolet light or fungal elicitor in cultured parsley cells is overriden by a heat-shock response. Planta 177:1–8.CrossRefGoogle Scholar
  42. Wellmann, E. 1975. UV dose-dependent induction of enzymes related to flavonoid biosynthesis in cell suspension cultures of parsley. FEBS Letters 51: 105–107.PubMedCrossRefGoogle Scholar
  43. Wilt, F. M., and G. C. Miller. 1992. Seasonal variation of coumarin and flavonoid concentrations in persistent leaves of Wyoming Big Sagebrush (Artemisia tridentata ssp. wyomingensis: Asteraceae). Biochemical Systematics and Ecology 20: 53–67.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2004

Authors and Affiliations

  • Charles S.  Cockell
    • 1
  • Joe Berry
    • 2
  • Adrian Southern
    • 1
  • Alesha Herrera
    • 3
  • Charles Yackulic
    • 1
  1. 1.Columbia University Biosphere 2 CentreOracleUSA
  2. 2.Department of Plant BiologyStanford UniversityStanfordUSA
  3. 3.Rice UniversityHoustonUSA

Personalised recommendations