Economic Botany

, Volume 61, Issue 1, pp 60–72 | Cite as

Describing maize (Zea Mays L.) landrace persistence in the Bajío of Mexico: A survey of 1940s and 1950s collection locations

  • K. J. Chambers
  • S. B. Brush
  • M. N. Grote
  • P. Gepts


Passport data for Mexico’s Guanajuato State were used to locate the sites where maize was collected in the 1940s and 1950s in an effort to document and conserve diversity. A map presenting survey points illustrates that collections have occurred repeatedly in the same locations. Observations of these locations reveal that urbanization and industrialization, not high yielding varieties, are displacing traditional varieties. Non-linear principal components analysis was used to assess associations between variables in areas where maize persists. Landraces appear to be associated with mountains and mesas, mixed cropping, little or no access to irrigation and areas classified as having low agricultural capacity; conversely, landraces have more commonly been replaced in areas of high agricultural capacity. The areas of high agriculture capacity, located in the riparian areas and plains, also have been the easiest to develop for urban and industrial use. Increasingly high rates of urbanization and development in areas of high agriculture capacity will impede the conservation of crop diversity in these areas.

Key Words

Maize crop diversity in situ conservation ex situ conservation the Bajío non-linear principal components analysis Mexico economic development urbanization industrialization landraces hybrid crops 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aguirre Gomez, J. A., M. R. Bellon, and M. Smale. 2000 A regional analysis of maize biological diversity in southeastern Guanajuato, Mexico. Economic Botany 54(l):60–72.Google Scholar
  2. Aquino, P., F. Carrión, R. Calvo, and D. Flores. 2001. Selected maize statistics. Pages 45–57 in P. L. Pingali, ed., CIMMYT 1999-2000 world maize facts and trends, meeting world maize needs: Technological opportunities and priorities for the public sector. International Maize and Wheat Improvement Center (CIMMYT), Mexico D. F.Google Scholar
  3. Bellon, M. R. 1996. The dynamics of crop infraspecific diversity: A conceptual framework at the farmer level. Economic Botany 50:26–39.Google Scholar
  4. —. 2000. Demand and supply of crop infraspecific diversity on farms: Towards a policy framework for on-farm conservation: International Maize and Wheat Improvement Center (CIMMYT) Economics Working Paper 01-01. CIMMYT, Mexico D.F.Google Scholar
  5. Berger, J., S. Abbot, and N. C. Turner. 2003. Ecogeography of annual wildCicer species: The poor state of the world collection. Crop Science 43:1076–1090.Google Scholar
  6. Brading, D. A. 1978. Haciendas and ranchos in the Mexican Bajío: León 1700–1860. Cambridge University Press, Cambridge, UK.Google Scholar
  7. Brush, S. B., J. E. Taylor, and M. R. Bellon. 1992 Biological diversity and technology adoption in Andean potato agriculture. Journal of Development Economics 39:365–87.CrossRefGoogle Scholar
  8. —. 2004. Farmers’ bounty: Locating crop diversity in the contemporary world. Yale University Press, New Haven (CT) and London.Google Scholar
  9. Butzer, K. W. and E. K. Butzer. 1997. The‘natural’ vegetation of the Mexican Bajío: Archival documentation of a 16th-century savanna environment. Quaternary International 43(44):161–172.CrossRefGoogle Scholar
  10. Collier, G. A. 1994. Reforms of Mexico’s agrarian code: Impacts of the peasantry. Research in Economic Anthropology 1:105–127.Google Scholar
  11. Cotter, J. 2003. Troubled harvest: Agronomy and revolution in Mexico, 1880-2002. Praeger Publishers, Westport, CT.Google Scholar
  12. Food and Agriculture Organization of the United Nations (FAO). (1998) World reference base for soil resources: 84 World Soil Resource Reports. International Society of Soil Science, Rome, Italy.Google Scholar
  13. Gifi, A. 1990. Nonlinear multivariate analysis. John Wiley and Sons, Chichester, UK.Google Scholar
  14. Gobierno del Estado de Guanajuato. 2006. About Guanajuato. URL: [Accessed January 23, 2006].Google Scholar
  15. Goodman, M. 2004 Are GM crops a threat to biological diversity? AgBiotech Buzz, Pew Initiative on Food and Biotechnology: Washington, DC. Vol 3(5), URL: [Accessed October 10, 2005].Google Scholar
  16. Harlan, J. R. 1975. Our vanishing genetic resources. Science 188:618–621.CrossRefGoogle Scholar
  17. Hijmans, R. J., K. A. Garrett, Z. Human, D. P. Zhang, M. Schreuder, and M. Bonierbale. 2000. Assessing the geographic representativeness of genebank collections: The case of Bolivian wild potatoes. Conservation Biology 14:1755–1765.CrossRefGoogle Scholar
  18. Instituto Nacional de Estadística, Geografía e Informatica (INEGI). 1980. Síntesis Geográfica de Guanajuato Secretaría de Programación y Resupuesto. Coordinatión General de los Servicios Nacionales de Estadística, Geografía e Informática, Mexico, D. F.Google Scholar
  19. Jarvis, A., S. Yearman, L. Guarino, and J. Tohme. 2005. The role of geographic analysis in locating, understanding, and using plant genetic diversity. Methods in Enzymology 395:279–298.PubMedCrossRefGoogle Scholar
  20. Kroonenberg, P. M, B. D. Harch, K. E. Basford, and A. Cruickshank. 1997. Combined analysis of categorical and numerical descriptors of Australian groundnut accessions using nonlinear principal components analysis. Journal of Agricultural, Biological, and Environmental Statistics 2(3):294–312.CrossRefGoogle Scholar
  21. Marshall, D. R. 1989. Limitations to the use of germplasm collections. Pages 105–120 in A. H. D. Brown, O. H. Frankel, D. R. Marshall, J. T. Williams, eds., The use of plant genetic resources. Cambridge University Press, Cambridge, UK.Google Scholar
  22. Murphy, M. E. 1986. Irrigation in the Bajío region of colonial Mexico: Dellplain Latin American Studies, No. 19. Westview Press, Boulder, CO.Google Scholar
  23. Plucknett, D. L, N. J. H. Smith, J. T. Williams, and N. Murthi Anishetty. 1983. Crop germplasm conservation and developing countries. Science 220:165–169.CrossRefGoogle Scholar
  24. R Development Core Team. 2005. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: Scholar
  25. Serratos-Hernández, J. A. (coordinator). 2002. Consensus document on the biology of maize. International Maize and Wheat Improvement Center (INIFAP-CIMMYT), Mexico D.F.Google Scholar
  26. Smith, M. P. 2003. Transnationalism, the state, and the extraterritorial citizen. Politics and Society 31(4): 467–502.CrossRefGoogle Scholar
  27. Taylor, E. J. 2003. The microeconomics of globalization: Evidence from China and Mexico. Pages 213–231 in Organization for Economic Co-operation and Development (OECD), Agricultural trade and poverty: Making policy analysis count. OECD, Paris.Google Scholar
  28. Thrupp, L. A. 2004. The importance of biodiversity in agroecosystems. Pages 315–337 in D. Clements and A. Shrestha, eds., New dimensions in agroecology. Food Products Press, Binghamton, NY.Google Scholar
  29. Tripp, R. 1996. Biodiversity and modern crop varieties: Sharpening the debate. Agriculture and Human Values 13:48–62.CrossRefGoogle Scholar
  30. Van Dusen, E. 2000. In situ conservation of crop genetic resources in the Mexican milpa system. Ph.D. Dissertation, Agricultural and Resource Economics, University of California, Davis, CA.Google Scholar
  31. Vivó Escoto, J. A. 1964. Weather and climate of Mexico and Central America. Pages 187–215 in R. C. West, ed., Handbook of Middle American Indians, Vol. 1: Natural Environment and Early Cultures. University of Texas Press, Austin, TX.Google Scholar
  32. Welhausen, E. J., L. M. Roberts, and E. Hernandez X. 1952. Races of maize in Mexico. Bussey Institute, Harvard University, Cambridge, MA.Google Scholar
  33. —, A. Fuenets, A. H. Corso, and P. C. Mangelsdorf. 1957. Races of maize in Central America. Publication 511, NAS-NRC, Washington, DC.Google Scholar
  34. Wilkes, H. G. and K. K. Wilkes. 1972. The green revolution. Environment 14:32–39.Google Scholar
  35. Wright, A. 1984. Innocents abroad: American agriculture research in Mexico. Pages 135–151 in W. Jackson, W. Berry, and B. Coleman, eds., Meeting the expectations of the land: Essays in sustainable agriculture and stewardship. North Point Press, San Francisco, CA.Google Scholar
  36. Zimmerer, K. S. 1991. Managing diversity in potato and maize fields of the Peruvian Andes. Journal of Ethnobiology 11:23–49.Google Scholar
  37. —. 1996. Changing fortunes: Biodiversity and peasant livelihood in the Peruvian Andes. University of California Press, Berkeley, CA.Google Scholar

Copyright information

© The New York Botanical Garden 2007

Authors and Affiliations

  • K. J. Chambers
    • 1
  • S. B. Brush
    • 2
  • M. N. Grote
    • 3
  • P. Gepts
    • 4
  1. 1.Geography Graduate GroupUniversity of California, DavisDavis
  2. 2.Human and Community DevelopmentUniversity of California, DavisDavis
  3. 3.Department of AnthropologyUniversity of California, DavisDavis
  4. 4.Agronomy and Range ScienceUniversity of California, DavisDavis

Personalised recommendations