Economic Botany

, 61:269 | Cite as

Gathered food plants in the mountains of Castilla-La Mancha (Spain): Ethnobotany and multivariate analysis

  • Diego Rivera
  • Concepción Obón
  • Cristina Inocencio
  • Michael Heinrich
  • Alonso Verde
  • José Fajardo
  • José Antonio Palazón
Research Articles


Gathered food plants (GFPs) (wild and weeds) are crucial for understanding traditional Mediterranean diets. Combining open interviews and free-listing questionnaires, we identified 215 GFP items, i.e., 53 fungi and 162 from 154 vascular plant species. The variation in frequency and in salience among the items follows a rectangular hyperbola. Highly salient species were Silene vulgaris (Moench) Garcke, Scolymus hispanicus L., and Pleurotus eryngii (DC.: Fr.) Quélet. Salience and frequency showed no correlation with the expected health benefits of each species. Regional frequency in the Mediterranean and local frequency are directly related. Thus, local food plants are much less “local” than expected.

Different types of culinary preparations provide the most information in the cluster analysis of variables. The cluster analysis of items produced a tree with 10 clusters that form culture-specific logical entities, allowing people to structure their environment. Within each cluster, plant species are replaced and incorporated provided they resemble the general profile. This allows innovation and adaptation on a local level and explains the differences between adjacent localities in the list of species. Two types of clusters or species complexes are described: “species-labeled” and “uses-labeled.” Lastly, we discuss the underlying empirical basis of the ethnoclassification in the Mediterranean area.

Key words

Ethnobotany local food food plants traditional knowledge Mediterranean biodiversity statistical analysis ethnoclassification 

Literature cited

  1. Benach, J., Y. Yasui, C. Borrell, E. Rosa, M. I. Pasarín, N. Benach, E. Español, J. M. Martínez, and A. Daponte. 2001. Atlas of Mortality in Small Areas in Spain, 1987–1995. Universitat Pompeu Fabra, Barcelona, Spain.Google Scholar
  2. —, and Y. Yasui. 1999. Geographical Patterns of Excess Mortality in Spain Explained by Two Indices of Deprivation. Journal of Epidemiology and Community Health 53:423–431.CrossRefPubMedGoogle Scholar
  3. Benzecri, J. P. 1992. Correspondence Analysis Handbook. Marcel Dekker, New York.Google Scholar
  4. Berlin, B. 1992. Ethnobiological Classification. Princeton University Press, Princeton, New Jersey.Google Scholar
  5. Brett, J., and M. Heinrich. 1998. Culture Perception and the Environment. Journal of Applied Botany 72:67–69.Google Scholar
  6. Eynden, V. Van Den. 2004. Use and Management of Edible Non-Crop Plants in Southern Ecuador. University of Ghent, Ghent, Belgium.Google Scholar
  7. Fajardo, J., A. Verde, D. Rivera, and C. Obón. 2007. Etnobotánica en la Serranía de Cuenca: Las Plantas y El Hombre. Diputación Provincial de Cuenca, Cuenca, Spain.Google Scholar
  8. Heinrich, M., M. Leonti, S. Nebel, and W. Peschel. 2005. ‘Local Food—Nutraceuticals’: An Example of a Multidisciplinary Research Project on Local Knowledge. Journal of Pharmacology and Physiology 56(S):5–22.Google Scholar
  9. Ihaka, R., and R. Gentleman. 1997. The R Project for Statistical Computing. Department of Statistics, University of Auckland, Auckland, New Zealand.Google Scholar
  10. Keys, A. 1980. Seven Countries: A Multivariate Analysis of Death and Coronary Heart Disease. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  11. Lebart, L., and A. Morineau. 1985. SPAD, Systeme pour l’Analyse des Donnes. Paris.Google Scholar
  12. —, A. Morineau, and K. M. Warwik. 1984. Multivariate Descriptive Statistical Analysis, Correspondence Analysis and Related Techniques for Large Matrices. Wiley, New York.Google Scholar
  13. LFN (Local Food-Nutraceuticals Consortium). 2005. Understanding Local Mediterranean Diets: A Multidisciplinary Pharmacological and Ethnobotanical Approach. Pharmacological Research 52:353–366.CrossRefGoogle Scholar
  14. Leonti, M., S. Nebel, D. Rivera, and M. Heinrich. 2006. Wild Gathered Food Plants in the European Mediterranean: A Comparative Analysis. Economic Botany 60:130–142.CrossRefGoogle Scholar
  15. Linares, E., and R. Bye. 1987. A Study of Four Medicinal Plant Complexes of Mexico and Adjacent United States. Journal of Ethnopharmacology 19:153–183.CrossRefPubMedGoogle Scholar
  16. Moerman, D. E. 1996. An Analysis of the Food Plants and Drug Plants of Native North America. Journal of Ethnopharmacology 52:1–22.CrossRefPubMedGoogle Scholar
  17. Murphy, T. M., M. Math, and L. H. Finkel. 2003. Curvature Covariation as a Factor in Perceptual Salience. Pages 16–19 in Professor Metin Akay, Conference Chair, Conference Proceedings: First International IEEE EMBS Conference on Neural Engineering 2003. The Institute of Electrical and Electronics Engineers, Inc., (IEEE), New York. (21 May 2007).Google Scholar
  18. Palazón, J. A., and J. F. Calvo. 1999. Métodos Cuantitativos. (17 May 2007).Google Scholar
  19. Pardo-de-Santayana, M., E. Blanco, and R. Morales. 2005. Plants Known as “té” (tea) in Spain: An Ethno-Pharmaco-Botanical Review. Journal of Ethnopharmacology 98:1–19.CrossRefPubMedGoogle Scholar
  20. Rivera, D., and C. Obón. 2005. Innovation and Tradition in Mediterranean Diet: Gathered Food Plants. Page 143 in M. Popp, M. Hesse, T. Stuessy, and J. Greimler, eds., XVII International Botanical Congress, Abstracts. University of Vienna, Vienna, Austria.Google Scholar
  21. —,—, C. Inocencio, M. Heinrich, A. Verde, J. Fajardo, and R. Llorach. 2005. The Ethnobotanical Study of Local Mediterranean Food Plants as Medicinal Resources in Southern Spain. Journal of Physiology and Pharmacology 56(S):97–114.PubMedGoogle Scholar
  22. —,—, M. Heinrich, C. Inocencio, A. Verde, and J. Fajardo. 2006. Gathered Mediterranean Food Plants—Ethnobotanical Investigations and Historical Development. Pages 18–74 in M. Heinrich, W. Mueller, and C. Galli, eds., Local Mediterranean Food Plants and Nutraceuticals. Forum of Nutrition 59. Karger, Basel, Switzerland.CrossRefGoogle Scholar
  23. Sutrop, U. 2001. List Task and a Cognitive Salience Index. Field Methods 3:263–276.CrossRefGoogle Scholar
  24. Trichopoulou, A., E. Vasilopoulou, P. Hollman, C. Chamalides, E. Foufa, T. Kaloudis, D. Kromhout, P. Miskaki, I. Petrochilou, E. Poulima, K. Stafilakis, and D. Theophilou. 2000. Nutritional Composition and Flavonoid Content of Edible Wild Greens and Green Pies: A Potential Rich Source of Antioxidant Nutrients in the Mediterranean Diet. Food Chemistry 70:319–323.CrossRefGoogle Scholar
  25. Vainik, E. 2004. Lexical Knowledge of Emotions: The Structure, Variability and Semantics of the Estonian Emotion Vocabulary. Institute of Estonian Language, Tartu, Estonia.Google Scholar
  26. Verde, A., D. Rivera, and C. Obón. 1998. Etnobotánica en las Sierras de Segura y Alcaraz: Las Plantas y El Hombre. Instituto de Estudios Albacetenses, Albacete, Spain.Google Scholar
  27. Ward, J. H. 1963. Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistics Association 58:236–244.CrossRefGoogle Scholar
  28. Wikipedia. 2006a. Salience (neuroscience).‘neuroscience’ (5 March 2007).Google Scholar
  29. Wikipedia. 2006b. Salience (semiotics).‘semiotics’ (5 March 2007).Google Scholar

Copyright information

© The New York Botanical Garden 2007

Authors and Affiliations

  • Diego Rivera
    • 1
  • Concepción Obón
    • 2
  • Cristina Inocencio
    • 2
  • Michael Heinrich
    • 3
  • Alonso Verde
    • 1
  • José Fajardo
    • 1
  • José Antonio Palazón
    • 4
  1. 1.Departamento de Biología Vegetal, Facultad de BiologíaUniversidad de MurciaMurciaSpain
  2. 2.Departamento de Biología Aplicada, EPSOUniversidad Miguel HernándezOrihuelaSpain
  3. 3.Centre for Pharmacognosy and Phytotherapy, The School of PharmacyUniv. LondonLondonUK
  4. 4.Departamento de Ecología e Hidrología, Facultad de BiologíaUniversidad de MurciaMurciaSpain

Personalised recommendations