Advertisement

Economic Botany

, Volume 58, Issue 2, pp 242–256 | Cite as

Genetic diversity of traditional South American Landraces of Cassava (Manihot esculenta Crantz): an analysis using microsatellites

  • Marianne Elias
  • Gilda Santos Mühlen
  • Doyle McKey
  • Ana Carolina Roa
  • Joe Tohme
Article

Abstract

The extent and structure of the genetic variability of traditional varieties of cassava (Manihot esculenta Crantz) have been little documented, despite considerable evidence for this cropś great varietal diversity in traditional agroecosystems. We used microsatellite markers to assess the genetic structure of traditional landraces of sweet and bitter cassava collected from five South American sites. As reference, we used a sample of 38 accessions from a world collection of cultivated cassava. For a total of 10 loci examined, we found 15 alleles that were not represented in this sample. Ten of these had been previously detected in wild Manihot species. The geographical structure of genetic variability was weak, but the genetic differentiation between bitter and sweet landraces was significant, suggesting that each form had evolved separately after domestication. Our results showed that traditional landraces form an important source of genetic diversity and merit more attention from managers of crop genetic resources.

Key Words

bitter cassava genetic diversity microsatellites sweet cassava traditional farming 

Diversidade Genética de Variedades Tradicionais Sulamericanas de Mandioca (Manihot esculenta Crantz: Uma Análise com Marcadores Microssatélites

Résumé

A extensão e a estruturação da variabilidade genética de variedades tradicionais de mandioca (Manihot esculenta Crantz) têm sido pouco documentadas, apesar de existirem evidências sugerindo uma grande diversidade varietal desta cultura em agroecosistemas tradicionais. No presente trabalho, foram usados marcadores de DNA, do tipo microssatélite, para avaliar a estrutura genética de variedades tradicionais de mandioca brava e mandioca de mesa coletadas em cinco localidades da América do Sul. Como referência, usou-se um conjunto de 38 acessos de uma coleção mundial de germoplasma de mandioca. Entre as variedades tradicionais, foram encontrados 15 alelos que não estavam presentes nesta amostragem da coleção mundial. Dez destes alelos já haviam sido detectados em espécies silvestres de Manihot. Apenas uma leve estruturação geográfica da variabilidade foi observada. No entanto, foi evidenciada uma diferenciação genética entre variedades bravas e de mesa, sugerindo que cada forma tenha evoluído separadamente após a domesticaç~ao. Nossos resultados mostram que variedades tradicionais constituem uma importante fonte de diversidade genética e deveriam receber maior atenção no manejo de recursos genéticos de plantas cultivadas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allem, A. C. 1994. The origin ofManihot esculenta Crantz (Euphorbiaceae). Genetic Resources and Crop Evolution 41:133–150.CrossRefGoogle Scholar
  2. Balée, W., andA. Gély. 1989. Managed forest succession in Amazonia: the Kaápor case. Pages 129–158 in D. A. Posey and W. Balée, eds., Resource management in Amazonia: Indigenous and folk strategies. Advances in Economic Botany 7. New York Botanical Garden, Bronx, NY.Google Scholar
  3. Bolhuis, G. G. 1954. The toxicity of cassava roots. Netherlands Journal of Agricultural Science 2:176–185.Google Scholar
  4. Boster, J. S. 1984a. Classification, cultivation, and selection of Aguaruna cultivars ofManihot esculenta (Euphorbiaceae). Pages 34–47 in G. T. Prance and J. A. Kallunki, eds., Ethnobotany in the neotropics. Advances in Economic Botany 1. New York Botanical Garden, Bronx, NY.Google Scholar
  5. — 1984b. Inferring decision making from preferences and behaviour: An analysis of Aguaruna Jívaro manioc selection. Human Ecology 12(4): 343–358.CrossRefGoogle Scholar
  6. — 1985. Selection for perceptual distinctiveness: evidence from Aguaruna cultivars ofManihot esculenta. Economic Botany 39:310–325.Google Scholar
  7. — 1986. Exchange of varieties and information between Aguaruna manioc cultivators. American Anthropologist 88(2):428–436.CrossRefGoogle Scholar
  8. Brush, S. B. 1995. In situ conservation of landraces in centers of crop diversity. Crop Science 35:346–354.Google Scholar
  9. —,R. Kesseli, R. Ortega, P. Cisnero, K. Zimmerer, andC. Quiros. 1994. Potato diversity in the Andean center of crop domestication. Conservation Biology 9(5):1189–1198.CrossRefGoogle Scholar
  10. Bueno, A. 1985. Hybridization and breeding methodologies appropriate to cassava. In Cassava breeding, A multidisciplinary review. Proceedings of a workshop held in the Philippines, 4–7 March 1985.Google Scholar
  11. Carneiro, R. L. 1983. The cultivation of cassava among the Kuikuru of the Upper Xingu. Pages 65–111 in R. B. Hames and W. T. Vickers, eds., Adaptive responses of Native Amazonians. Academic Press, New York.Google Scholar
  12. Chavarriaga-Aguirre, P., M. M. Maya, M. W. Bonierbale, S. Kresovich, M. A. Fregene, J. Tohme, andG. Kochert. 1998. Microsatellites in cassava (Manihot esculenta Crantz): discovery, inheritance and variability. Theoretical and Applied Genetics 97:493–501.CrossRefGoogle Scholar
  13. Chernela, J. M. 1987. Os cultivares de mandioca na área do Uaupés (Tukano). Pages 151–158 in B. Ribeiro, ed., SUMA: Etnólogica Brasileira, 1, Etnobiologia. Financiadora de Estudos e Projetos (FINEP), Petrópolis, RJ.Google Scholar
  14. Chiwona-Karltun, L., J. Mkumbira, J. Saka, M. Bovin, N. M. Mahungu, andH. Rosling. 1998. The importance of being bitter–a qualitative study on cassava cultivar preference in Malawi. Ecology and Food Nutrition 37:219–245.Google Scholar
  15. Colombo, C., G. Second, andA. Charrier. 2000. Diversity within American cassava germ plasm based on RAPD markers. Genetics and Molecular Biology 23(1):189–199.CrossRefGoogle Scholar
  16. —,G. Second, T. Losada Valle, andA. Charrier. 1998. Genetic diversity characterization of cassava cultivars (Manihot esculenta Crantz). I. RAPD markers. Genetics and Molecular Biology 21(l):105–113.Google Scholar
  17. Cury, R. 1993. Dinâmica evolutiva e caracterização de germoplasma de mandioca(Manihot esculenta Crantz) na agricultura autóctone do sul do Estado de São Paulo. Master’s thesis, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP.Google Scholar
  18. — 1998. Distribuição da diversidade genética e associação de caracteres em etnovariedades de mandioca (Manihot esculenta, Crantz) provenientes da agricultura tradicional do Brasil. Doctoral dissertation, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP.Google Scholar
  19. Dellaporta, S. L., J. Wood, andJ. R. Hicks. 1983. A plant DNA minipreparation: version II. Plant Molecular Biology and Reproduction 1(4): 19.CrossRefGoogle Scholar
  20. Dufour, D. L. 1988. Cyanide content of cassava (Manihot esculenta, Euphorbiaceae) cultivars used by Tukanoan Indians in northwest Amazonia. Economic Botany 42:255–266.Google Scholar
  21. — 1989. Effectiveness of cassava detoxification techniques used by indigenous peoples in northwestern Amazonia. Interciencia 14(2):88–91.Google Scholar
  22. — 1995. A closer look at the nutritional implications of bitter cassava use. Pages 147–165 in L. E. Sponsel, ed., Indigenous peoples and the future of Amazonia: An ecological anthropology of an endangered world. University of Arizona Press, Tucson, AZ.Google Scholar
  23. —, andW. M. Wilson. 1996. La douceur de lámertume: une réévaluation des choix du cassava amer par les Indiens Tukano d’Amazonie. Pages 1231–1238 in C. M. Hladik, A. Hladik, H. Pagezy, O. F. Linares, G. J. A. Koppert, and A. Froment, eds., LÁlimentation en Forêt Tropicale: Interactions Bioculturelles et Perspectives pour le Développement. United Nations Educational, Scientific, and Cultural Organization (UNESCO), Paris.Google Scholar
  24. Elias, M., andD. McKey. 2000. The unmanaged reproductive ecology of domesticated plants in traditional agroecosystems: An example involving cassava and a call for data. Acta Oecologica 21(3): 223–230.CrossRefGoogle Scholar
  25. —,O. Panaud, andT. Robert. 2000. Assessment of genetic variability in a traditional cassava (Manihot esculenta Crantz) farming system, using AFLP markers. Heredity 85:219–230.PubMedCrossRefGoogle Scholar
  26. —,L. Rival, andD. McKey. 2000. Perception and management of cassava (Manihot esculenta Crantz) diversity among Makushi Amerindians of Guyana (South America). Journal of Ethnobiology 20:239–265.Google Scholar
  27. —,D. McKey, O. Panaud, M. C. Anstett, andT. Robert. 2001. Traditional management of cassava morphological and genetic diversity by the Makushi Amerindians (Guyana, South America): Perspectives for on-farm conservation of crop genetic resources. Euphytica 120:143–157.CrossRefGoogle Scholar
  28. Emperaire, L., F. Pinton, andG. Second. 1998. Une gestion dynamique de la diversité variétale du manioc en Amazonie du Nord-Ouest. Nature, Science et Société 6(2):27–42.CrossRefGoogle Scholar
  29. Faraldo, M. I. F., R. M. da Silva, A. Ando, andP. S. Martins. 2000. Variabilidade genética de etnovariedades de mandioca em regiões geográficas do Brasil. Scientia Agricola 57(3):499–505.CrossRefGoogle Scholar
  30. Felsenstein, J. 1993. PHYLIP, Phylogeny Inference Package, Version 3.5c. Department of Genetics, University of Washington, Seattle, WA.Google Scholar
  31. Grenand, F. 1993. Bitter manioc in the lowlands of tropical America: from myth to commercialisation. Pages 447–462 in C. M. Hladik, A. Hladik, H. Pagezy, O. F. Linares, G. J. A. Koppert, and A. Froment, eds., Tropical forests: People and food. United Nations Educational, Scientific, and Cultural Organization (UNESCO), Paris.Google Scholar
  32. Hugh-Jones, C. 1979. From the milk river: spatial and temporal processes in Northwest Amazonia. Cambridge University Press, UK.Google Scholar
  33. Jarvis, D. I., andT. Hodgkin. 1999. Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agroecosystems. Molecular Ecology 8:S159-S173.CrossRefGoogle Scholar
  34. Jennings, D. L. 1963. Variation in pollen and ovule fertility in varieties of cassava and the effect of interspecific crossing on fertility. Euphytica 12:69–76.CrossRefGoogle Scholar
  35. Kerr, W. E., andC. R. Clement. 1980. Práticas agrícolas de conseqüências genéticas que possibilitaram aos índios da Amazonia uma melhor adaptação ás condições ecológicas da região. Acta Amazônica 10(2):251–261.Google Scholar
  36. Louette, D., A. Charrier, andJ. Berthaud. 1997. In situ conservation of maize in Mexico: Genetic diversity and maize seed management in a traditional community. Economic Botany 51(l):20–38.Google Scholar
  37. Martins, P. S. 1994. Biodiversity and agriculture: patterns of domestication of Brazilian native plant species. Anais da Academia Brasileira de Ciências 66: 219–224.Google Scholar
  38. McKey, D., andS. Beckerman. 1993. Chemical ecology, plant evolution and traditional cassava cultivation systems. Pages 83–112 in C. M. Hladik, A. Hladik, H. Pagezy, O. F. Linares, G. J. A. Koppert, and A. Froment, eds., Tropical forests: People and food. United Nations Educational, Scientific, and Cultural Organization (UNESCO), Paris.Google Scholar
  39. Miller, K., M. H. Allegretti, N. Johnson, andB. Johnson. 1995. Measures for conservation of biodiversity and sustainable use of its components. In V. H. Heywood, ed., Global biodiversity assessment, United Nations Environment Programme. Cambridge University Press, UK.Google Scholar
  40. Mowat, L. 1989. Cassava and chicha, bread and beer of the Amazon Indians. Shire Publications, Aylesbury.Google Scholar
  41. Mühlen, G. S., P. S. Martins, andA. Ando. 2000. Variabilidade genética de etnovariedades de mandioca, avaliada por marcadores de DNA. [Genetic diversity of cassava landraces assessed by DNA markers]. Scientia Agricola 57(2):319–328.CrossRefGoogle Scholar
  42. Nassar, N. M. A. 1980. Attempts to hybridize wildManihot species with cassava. Economic Botany 34(1): 13–15.Google Scholar
  43. —,J. R. da Silva, andC. Viera. 1986. Hybridação interespecifica entre mandioca e espécies silvestresdeManihot. Ciência e Cultura 38(6): 1050–1085.Google Scholar
  44. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 83:583–590.Google Scholar
  45. —, andW. Li. 1979. Mathematical model for studying genetic variations in terms of restriction endonucleases. Proceedings of the National Academy of Sciences 76:5269–5273.CrossRefGoogle Scholar
  46. Olsen, K. M., andB. A. Schaal. 1999. Evidence on the origin of cassava: Phylogeography ofManihot esculenta. Proceedings of the National Academy of Sciences 96:5586–5591.CrossRefGoogle Scholar
  47. Peroni, N. 1998. Taxonomia folk e diversidade intraespecífica de mandioca (Manihot esculenta Crantz) em roças de agriculture tradicional em áreas de Mata Atlântica do sul do Estado de São Paulo. Masterś thesis, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP.Google Scholar
  48. Perry, L. 2002. Starch granule size and the domestication of Manioc (Manihot esculenta) and sweet potato (Ipomoea batatas). Economic Botany 56: 335–349.CrossRefGoogle Scholar
  49. Quiros, C. F., S. B. Brush, D. S. Douches, K. S. Zimmerer, andG. Huestis. 1990. Biochemical and folk assessment of variability of Andean cultivated potatoes. Economic Botany 44:254–266.Google Scholar
  50. Renvoize, B. S. 1972. The area of origin ofManihot esculenta as a crop plant-a review of the evidence. Economic Botany 26:352–360.Google Scholar
  51. Roa, A. C., M. M. Maya, M. C. Duque, J. Tohme, A. C. Allem, andM. W. Bonierbale. 1997. AFLP analysis of relationships among cassava and otherManihot species. Theoretical and Applied Genetics 95:741–750.CrossRefGoogle Scholar
  52. —,P. Chavarriaga-Aguirre, M. C. Duque, M. M.Maya, M. W. Bonierbale, C. Iglesias, andJ. Tohme. 2000. Cross-species amplification of cassava (Manihot esculenta Crantz) microsatellite primers within the genus: Polymorphism, genetic diversity and degree of relationship. American Journal of Botany 87(11):1647–1655.PubMedCrossRefGoogle Scholar
  53. Rohlf, F. J. 1994. NTSYS-PC: Numerical Taxonomy and Multivariate System, Version 1.80. Exeter Software, Setauket, NY.Google Scholar
  54. Salick, J., N. Cellinese, andS. Knapp. 1997. Indigenous diversity of cassava: Generation, maintenance, use and loss among the Amuesha, Peruvian upper Amazon. Economic Botany 51(1):6–19.Google Scholar
  55. Sambatti, J. B. M., P. S. Martins, andA. Ando. 2001. Folk taxonomy and evolutionary dynamics of cassava: A case study in Ubatuba, Brazil. Economic Botany 55(l):93–105.Google Scholar
  56. Second, G., A. C. Allem, R. A. Mendes, L. J. C. B. Carvalho, L. Emperaire, C. Ingram, andC. Colombo. 1997. Molecular marker (AFLP)-basedManihot and cassava numerical taxonomy and genetic structure analysis in progress: Implications for their dynamic conservation and genetic mapping. African Journal of Root and Tuber Crops 2:140–147.Google Scholar
  57. STATISTICA. 1997. Statistica 5.1. StatSoft Inc., http: //www.statsoft.comGoogle Scholar
  58. Swofford, D. L.,R. B. Selander, andW. C. Black. 1997. BIOSYS-2, A Computer Program for the Analysis of Allelic Variation in Genetics, ftp:// Iamar.edu/pub/wcb4.Google Scholar
  59. Weir, B. S., andC. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370.CrossRefGoogle Scholar
  60. Wilson, W., andD. L. Dufour. 2002. Why bitter cassava? Productivity of bitter and sweet cassava in a Tukanoan Indian settlement in the Northwest Amazon. Economic Botany 56:49–57.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden Press 2004

Authors and Affiliations

  • Marianne Elias
    • 1
  • Gilda Santos Mühlen
    • 2
  • Doyle McKey
    • 1
  • Ana Carolina Roa
    • 3
  • Joe Tohme
    • 4
  1. 1.Centre d’Ecologie Fonctionnelle et Evolutive [CEFE] of the Centre National de la Recherche Scientifique [CNRS]Montpellier cedex 5France
  2. 2.Instituto Agronômico de Campinas [IAC]Seção de Raízes e TubérculosCampinas, SPBrazil
  3. 3.Previously at CIAT, currently at CAMBIACanberraAustralia
  4. 4.Centro Internacional de Agricultura Tropical [CIAT]Cali

Personalised recommendations