, Volume 57, Issue 4, pp 382–396 | Cite as

Astragalus (Fabaceae): A molecular phylogenetic perspective

  • Martin F. Wojciechowski


Nucleotide sequences of the plastidmatK gene and nuclear rDNA internal transcribed spacer region were sampled fromAstragalus L. (Fabaceae), and its closest relatives within tribe Galegeae, to infer phylogenetic relationships and estimate ages of diversification. Consistent with previous studies that emphasized sampling for nrDNA ITS primarily within either New World or Old World species groups,Astragalus, with the exception of a few morphologically distinct species, is strongly supported as monophyletic based on maximum parsimony and Bayesian analyses ofmatK sequences as well as a combined sequence dataset. ThematK data provides better resolution and stronger clade support for relationships amongAstragalus and traditionally related genera than nrDNA ITS.Astragalus sensu stricto plus the genusOxytropis are strongly supported as sister to a clade composed of strictly Old World (African, Australasian) genera such asColutea. Sutherlandia, Lessertia, Swainsona, andCarmichaelia, plus several morphologically distinct segregates of EurasianAstragalus. Ages of these clades and rates of nucleotide substitution estimated from a fossil-constrained, rate-smoothed, Bayesian analysis ofmatK sequences sampled from Hologalegina indicateAstragalus diverged from its sister group,Oxtropis, 12–16 Ma, with divergence of Neo-Astragalus beginning ca 4.4. Ma. Estimates of absolute rates of nucleotide substitution forAstragalus and sister groups, which range from 8.9 to 10.2×10−10 substitutions per site per year, are not unusual when compared to those estimated for other, mainly temperate groups of papilionoid legumes. The results of previously published work and other recent developments on the phylogenetic relationships and diversification ofAstragalus are reviewed.

Key words

Astragalus diversification Fabaceae Neo-Astragalus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Baldwin, B. G. &M. J. Sanderson. 1998. Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proceedings of the National Academy of Sciences of the United States 95: 9402–9406.CrossRefGoogle Scholar
  2. Barneby, R. C.. 1952. A revision of the North American species ofOxytropis DC. Proceedings of the California Academy of Sciences, Series IV, 27: 177–312.Google Scholar
  3. — 1964. Atlas of North AmericanAstragalus. Memoirs of The New York Botanical Garden 13: 1–1188.Google Scholar
  4. Bobrov, E. G., A. G. Borisova, B. A. Fedchenko, S. G. Gorshkova, Y. S. Grigor’ev, A. A. Grossgeim, A. N. Krishtofovich, I. A. Linchevskii, A. S. Lozina-Lozinskaya, I. V. Palibin, K. K. Shaparenko, B. K. Shishkin, I. T. Vasil’chenko &V. N. Vasil’ev. 1972. Leguminosae:Oxytropis, Hedysarum. Pages 1–229.In: V. L. Komarov, B. K. Shishkin & E. G. Bobrov, editor. Flora of the U.S.S.R. Vol. 13. Israel Program for Scientific Translations, Jerusalem, Smithsonian Institution and the National Science Foundation, Washington, D.C.Google Scholar
  5. Borissova, A. 1937. GenusTragacantha Mill. Pages 479–497.In: Flora Tadzhikistanica. Vol. 5. Moscow.Google Scholar
  6. Bunge, A. von 1868. Generis Astragali species Gerontogeae. Pars prior. Claves diagnosticae Mémoires de l’ Académie Impériale des Sciences de Saint Pétersbourg, Septième Série 11: 1–140.Google Scholar
  7. — 1869. Generis Astragali species Gerontogeae. Pars Altera: Specierum enumeratio, Mémories de l’Académie Impériale des Sciences de Saint Pétersbourg, Septième Série 15: 1–254.Google Scholar
  8. Doyle, J. J., J. L. Doyle, J. A. Ballenger, E. E. Dickson, T. Kajita &H. Ohashi. 1997. A phylogeny of the chloroplast generbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation. American Journal of Botany 84: 541–554.CrossRefGoogle Scholar
  9. Engel, T.. 1992. Petiolar anatomy of North AmericanAstragalus species (Fabaceae) with persistent petioles. Aliso 13: 339–345.Google Scholar
  10. Felsenstein, J.. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  11. Gillett, J. B.. 1963.Astragalus L. (Leguminosae) in the highlands of tropical Africa. Kew Bulletin 17: 413–423.CrossRefGoogle Scholar
  12. Gómez-Sosa, E.. 1979. Las especies Sudamericanas del géneroAstragalus (Leguminosae) I. Las especies Patagónicas Argentinas, Darwiniana 22: 313–376.Google Scholar
  13. — 1981. Novedades en el géneroAstragalus (Leguminosae-Galegeae). Darwiniana 23: 507–516.Google Scholar
  14. — 1997.Astragalus johnstonii sp. nov. (Fabaceae) y relaciones con el complejoA. verticillatus (Phil.) Reiche. Gayana Botánica 54: 31–37.Google Scholar
  15. Goncharov, N. F., A. G. Borisova, S. G. Gorshkova, M. G. Popov &I. T. Vasil’chenko. 1965. Leguminosae:Astragalus. Pages 1–198.In: V. L. Komarov & B. K. Shishkin, editors. Flora of the U.S.S.R. Vol. 12. Israel Program for Scientific Translations. Jerusalem, Smithsoniar Institution and the National Science Foundation, Washington D.C.Google Scholar
  16. Gray, A. 1864. A revision and arrangement (mainly by the fruit) of the North American species ofAstragalus andOxytropis. Proceedings of the American Academy of Arts and Sciences 6: 188–236.Google Scholar
  17. Herendeen, P. S., W. L. Crepet &D. L. Dilcher. 1992. The fossil history of the Leguminosae: phylogenetic and biogeographic implications. Pages 303–316.In: P. S. Herendeen & D. L. Dilcher, editors. Advances in legume systematics. Part 4. The fossil recor. Royal Botanic Gardens, Kew.Google Scholar
  18. Hu, J.-M., M. Lavin, M. F. Wojciechowski &M. J. Sanderson. 2002. Phylogenetic analysis of nuclear ribosomal ITS/5.8. S sequences in the tribe Millettieae (Fabaceae):Poecilanthe-Cyclolobium, the core Millettieae, and theCallerya group. Systematic Botany 27: 722–733.Google Scholar
  19. Huelsenbeck, J. P., B. Larget, R. E. Miller &F. Ronquist. 2002. Potential applications and pifalls of Bayesian inference of phylogeny. Systematic Biology 51: 673–688.PubMedCrossRefGoogle Scholar
  20. — &F. Ronquist. 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17: 754–755.PubMedCrossRefGoogle Scholar
  21. Ikonnikov, S. 1977. Notae de flora Badachschanica. 4. Nov. Sist. Vyss. Rast. 14: 232.Google Scholar
  22. Isely, D.. 1998. Native and naturalized Leguminosae (Fabaceae) of the United States. M. L. Bean Life Science Museum, Brigham Young University, Provov, Utah.Google Scholar
  23. Johnston, I. M.. 1938. Notes on someAstragalus species of Ecuador and Peru. Journal of the Arnold Arboretum 19: 88–96.Google Scholar
  24. — 1947.Astragalus in Argentina, Bolivia and Chile. Journal of the Arnold Arboretum 28: 336–409.Google Scholar
  25. Kajita, T., H. Ohashi, Y. Tateishi, C. D. Bailey &J. J. Doyle. 2001.rbcL and legume phylogeny, with particular reference to Phaseoleae, Millettieae, and allies. Systematic Botany 26: 515–536.Google Scholar
  26. Kang, Y. &M.-L. Zhang. 2004. Study of pollen brush in selected species ofAstragalus L. subgenusPogonophace Bunge (Leguminosae). Plant Systematics and Evolution 249: 1–8.CrossRefGoogle Scholar
  27. —— &Z.-D. Chen. 2003. A preliminary phylogenetic study of the subgenusPogonophace (Astragalus) in China based on ITS sequence data. Acta Botanica Sinica 45: 140–145.Google Scholar
  28. Kazempour Osaloo, S., A. A. Maassoumi &N. Murakami. 2003. Molecular systematics of the genusAstragalus L. (Fabaceae): phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacers and chloroplast genendhF sequences. Plant Systematics and Evolution 242: 1–32.CrossRefGoogle Scholar
  29. Kazempour Osaloo, S., A. A. Maassoumi N. Murakami. 2005. Molecular systematics of the Old World Astragalus L. (Fabaceae) as inferred from nrDNA ITS sequence, data. Brittonia 57 (in press).Google Scholar
  30. Lavin, M., J. J. Doyle &J. D. Palmer. 1990. Evolutionary significance of the loss of the chloroplast-DNA inverted repeat in the Leguminosae subfamily Papilionoideae. Evolution 44: 390–402.CrossRefGoogle Scholar
  31. —,P. S. Herendeen &M. F. Wojciechowski. 2005. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Systematic Biology 54: 575–594.PubMedCrossRefGoogle Scholar
  32. —,M. F. Wojciechowski, P. Gasson, C. Hughes &E. Wheeler. 2003. Phylogeny of robinioid legumes (Fabaceae) revisited:Coursetia andGliricidia recircumscribed, and a biogeographical appraisal of the Caribbean endemics. Systematic Botany 28: 387–409.Google Scholar
  33. Ledingham, G. F. 1957. Chromosome numbers of some Saskatchewan Leguminosae with particular reference, toAstragalus andOxytropis. Canadian Journal of Botany 35: 657–666.CrossRefGoogle Scholar
  34. — 1960. Chromosome numbers inAstragalus andOxytropis. Canadian Journal of Genetics and Cytology 2: 119–128.Google Scholar
  35. Lewis, G. P., B. D. Schrire, B. A. Mackinder &M. Lock, editors. 2005. Legumes of the world. Royal Botanic Gardens. Kew.Google Scholar
  36. Liston, A.. 1992. Variation in the chloroplast genesrpoC1 andrpoC2 of, the genusAstragalus (Fabaceae): evidence from restriction site mapping of a PCR-amplified fragment. American Journal of Botany 79: 953–961.CrossRefGoogle Scholar
  37. — 1995. Use of the polymerase chain reaction to survey for the loss of the inverted repeat in the legume chloroplast genome. Pages 31–40.In: M. D. Crisp & J. J. Doyle, editors, Advances in legume systematics. Part 7. Phylogeny. Royal Botanic Gardens, Kew.Google Scholar
  38. — &J. A. Wheeler, 1994. The phylogenetic position of the genusAstragalus (Fabaceae): evidence from the chloroplast genesrpoC1 andrpoC2. Biochemical Systematics and Ecology 22: 377–388.CrossRefGoogle Scholar
  39. Lock, J. M. &K. Simpson. 1991. Legumes of West Asia, a check-list, Royal Botanic Gardens Kew.Google Scholar
  40. Mabberley, D. J., 1997. The Plant-Book, a portable dictionary of the vascular plants. Ed. 2. Cambridge University Press, Cambridge, UK.Google Scholar
  41. MacGinitie, H. D. 1953. Fossil plants of the Florissant, beds, Colorado. Carnegie Institute of Washington Publication 599.Google Scholar
  42. Bagallón, S. &M. J. Sanderson. 2001. Absolute diversification rates in angiosperm clades. Evolution 55: 1762–1780.Google Scholar
  43. Matthews, V. A., 1970.Biserrula. Pages 48–49.In: P. H. Davis, editor. Flora of Turkey and the East Aegean Islands. Edinburgh University Press, Edinburgh.Google Scholar
  44. Podlech, D. 1982. Neue aspekte zur evolution und gliederung der gattungAstragalus L Mitteilungen (aus) der Botanischen Staatssammlung München 18: 359–378.Google Scholar
  45. — 1983. Zur Taxonomie und Nomenclatur der tragacanthoiden Astragali. Mitteilungen (aus) der Botanischen Staatssammlung München 19: 1–23.Google Scholar
  46. — 1984. Revision vonAstragalus L. sect.Herpocaulos Bunge. Mitteilungen (aus) der Botanischen Staatssammlung München 20: 441–449.Google Scholar
  47. — 1990. Die typifizierung der altweltlichen Sektionen der GattungAstragalus L. (Leguminosae). Mitteilungen (aus) der Botanischen Staatssammlung München 29: 461–494.Google Scholar
  48. — 1991. The systematics of the annual species of the genusAstragalus L. (Leguminosae). Flora et Vegetatio Mundi 9: 1–8.Google Scholar
  49. — 1994. Revision der altweltlichen anuellen Arten der GattungAstragalus L. (Leguminosae). Sendtnera 2: 39–170.Google Scholar
  50. Polhill, R. M. 1981a. Papilionoideae. Pages 191–208.In: R. M. Polhill & P. H. Raven, editors. Advances in legume systematics. Part 1. Royal Botanic Gardens, Kew.Google Scholar
  51. — 1981b. Galegeae. Pages 357–363.In: R. M. Polhill & P. H. Raven, editors. Advances in legume systematics. Part 1. Royal Botanic Gardens, Kew.Google Scholar
  52. Posada, D. &K. A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.PubMedCrossRefGoogle Scholar
  53. Rydberg, P. A.. 1929. Astragalanae. North American Flora 24: 251–462.Google Scholar
  54. Sanderson, M. J.. 1991. Phylogenetic relationships within North AmericanAstragalus L. (Fabaceae). Systematic Botany 16: 414–430.CrossRefGoogle Scholar
  55. — 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19: 101–109.PubMedGoogle Scholar
  56. — 2003. Ros, version 1.6, User’s Manual. Distributed by the author. <> University of California, Davis.Google Scholar
  57. — &J. J. Doyle. 1993. Phylogenetic relation-ships in North AmericanAstragalus (Fabaceae) based on chloroplast DNA restriction site variation. Systematic Botany 18: 395–408.CrossRefGoogle Scholar
  58. — &M. F. Wojciechowski. 1996. Diversification rates in a temperate legume clade: are there so many species ofAstragalus (Fabaceae)? American Journal of Botany 83: 1488–1502.CrossRefGoogle Scholar
  59. Scherson, R., H.-K. Choi, D. R. Cook & M. J. Sanderson. 2005. Phylogenetics of New WorldAstragalus: the utility of genomics technology in reconstructing phylogenies at low taxonomic levels. Britonia 57 (in press).Google Scholar
  60. Swofford, D. L. 2002.PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  61. Taubert, P. 1894. Leguminosae. Pages 70–385In: A. Engler & K. Prantl, editors. Die Natürlichen Pflanzenfamilien. Vol. III. Verlag von W. Engelmann, Leipzig.Google Scholar
  62. Wagstaff, S. J., P. B. Heenan &M. J. Sanderson. 1999. Classification, origins, and patterns of diversification in New Zealand Carmichaelinae (Fabaceae). American Journal of Botany 86: 1346–1356.PubMedCrossRefGoogle Scholar
  63. Welsh, S. L., 2001. Revision of North American species ofOxytropis de Candolle (Leguminosae). E.P.S., Inc. Orem, Utah.Google Scholar
  64. Wenninger, J.. 1991. Revision vonAstragalus L. sect.Chlorostachys Bunge, sect.Phyllobium Bunge und sect.Skythropos Bunge (Leguminosae). Mitteilungen (aus) der Botanischen Staatssammlung München 30: 1–196.Google Scholar
  65. Wojciechowski, M. F., M. Lavin &M. J. Sanderson. 2004. A phylogeny of legumes (Leguminosae) based on analysis of, the plastidmatK gene resolves many well-supported subclades within the family. American Journal of Botany 91: 1846–1862.Google Scholar
  66. —,M. J. Sanderson, B. G. Baldwin &M. J. Donoghue. 1993. Monophyly of aneuploidAstragalus (Fabaceae): evidence from nuclear ribosomal DNA internal transcribed spacer sequences. American Journal of Botany 80: 711–722.CrossRefGoogle Scholar
  67. —— &J.-M. Hu. 1999. Evidence on the monophyly ofAstragalus (Fabaceae) and its major subgroups based on nuclear ribosomal DNA ITS and chloroplast DNAtrnL intron data. Systematic Botany 24: 409–437.CrossRefGoogle Scholar
  68. ——,K. P. Steele &A. Liston. 2000. Molecular phylogeny of the “temperate herbaceous tribes” of papilionoid legumes: a supertree approach. Pages 277–298.In: P. S. Herendeen & A. Bruneau, editors. Advances in legume systematics. Part 9. Royal Botanic Garden, Kew.Google Scholar
  69. Zarre, S. &D. Podlech. 1997. Problems in the taxonomy of TragacanthicAstragalus. Sendtnera 4: 243–250.Google Scholar

Copyright information

© The New York Botanical Garden 2005

Authors and Affiliations

  1. 1.School of Life SciencesArizona State UniversityTempeU.S.A.

Personalised recommendations