, 55:214 | Cite as

Recircumscription of the monocotyledonous family Petrosaviaceae to include Japonolirion

  • Kenneth M. Cameron
  • Mark W. Chase
  • Paula J. Rudall


Most systematists have favored placing Petrosaviaceae close to the Triuridaceae (formerly positioned within Alismatidae) by focusing on the mycoheterotrophic habit and nearly free carpels of Petrosaviaceae. Others have favored a position near the melanthioid lilies, perhaps serving as a linking-family to the Triuridaceae. We discuss the results of recently published, independent, and combined DNA sequence analyses that indicate a strongly supported sister relationship betweenPetrosavia (Petrosaviaceae) andJaponolirion (Japonoliriaceae). Molecular data show no connection of these genera to the Alismatales (including Tofieldiaceae), the Melanthiaceae s. str., the Liliales, or the Triuridaceae (now in Pandanales), although there are morphological similarities to each of these groups. A relationship to the Pandanales has been indicated in some molecular analyses, but this is not supported by bootstrap/jackknife analyses or by most morphological characters. BothPetrosavia andJaponolirion are native to high-evelation habitats and have bracteate racemes, pedicellate flowers, six persistent tepals, septal nectaries, three nearly distinct carpels, simultaneous microsporogenesis, monosulcate pollen, and follicular fruits. Outside of the Alismatales, no other monocotyledons share this combination of features. We therefore suggest that the Petrosaviaceae be re-circumscribed to includeJaponolirion. If the family's isolated position among the monocot orders continues to be found in phylogenetic studies, then recognition of the already published order Petrosaviales would be appropriate.

Key words

classification DNA Japonolirionaceae monocotyledon Petrosavia Petrosaviaceae systematics 

Literature Cited

  1. Angiosperm Phylogeny Group (APG). 1998. An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard. 85: 531–553.CrossRefGoogle Scholar
  2. Angiosperm Phylogeny Group II (APG II). In press. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc.Google Scholar
  3. Beccari, O. 1871.Petrosavia: nuovo genere di piante parasite della famiglia delle Melanthaceae. Nuovo Giorn. Bot. Ital. 3: 7–11.Google Scholar
  4. Behnke, H.-D. 2000. Forms and sizes of sieve-element plastids and evolution of the monocotyledons. Pages 163–188.In: K. L. Wilson & D. A. Morrison, editors. Monocots: systematics and evolution. Vol. 1. Proceedings of the Second International Conference on the Comparative Biology of the Monocots, Sydney. CSIRO Publishing, Melbourne.Google Scholar
  5. —,J. Treutlein, M. Wink, K. Kramer, C. Schneider &P. C. Kao. 2000. Systematics and evolution of Velloziaceae, with special reference to sieve-element plastids andrbcL sequence data. Bot. J. Linn. Soc. 134: 93–129.CrossRefGoogle Scholar
  6. Bentham, G. &J. D. Hooker. 1883. Genera plantarum. Reeve, Williams, and Norgate, London.Google Scholar
  7. Bullock, A. A. 1959. Nomina familiarum conservanda proposita. Taxon 8: 189–204.CrossRefGoogle Scholar
  8. Caddick, L. R., C. A. Furness, K. L. Stobart &P. J. Rudall. 1998. Microsporogenesis and pollen morphology in Dioscoreales and allied taxa. Grana 37: 321–336.CrossRefGoogle Scholar
  9. —,P. J. Rudall, P. Wilkin &M. W. Chase. 2000. Yams and their allies: systematics of Dioscoreales. Pages 475–487.In: K. L. Wilson & D. A. Morrison, editors. Monocots: systematics and evolution. Vol. 1. Proceedings of the Second International Conference on the Comparative Biology of the Monocots, Sydney. CSIRO Publishing, Melbourne.Google Scholar
  10. Cameron, K., M. Chase, M. Whitten, P. Kores, D. Jarrell, V. Albert, T. Yukawa, H. Hills &D. Goldman. 1999. A phylogenetic analysis of the Orchidaceae: evidence fromrbcL nucleotide sequences. Amer. J. Bot. 86: 208–224.CrossRefGoogle Scholar
  11. Chase, M. W., D. W. Stevenson, P. Wilkin &P. J. Rudall. 1995a. Monocot systematics: a combined analysis. Pages 685–730.In: P. J. Rudall, P. J. Cribb, D. F. Cutler & C. J. Humphries, editors. Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew.Google Scholar
  12. —,M. Duvall, H. Hills, J. Conran, A. Cox, L. Eguiarte, J. Hartwell, M. Fay, L. Caddick, K. Cameron &S. Hoot. 1995b. Molecular phylogenetics of Lilianae. Pages 109–137.In: P. J. Rudall, P. J. Cribb, D. F. Cutler & C. J. Humphries, editors. Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew.Google Scholar
  13. —,D. E. Soltis, P. S. Soltis, P. J. Rudall, M. F. Fay, W. H. Hahn, S. Sullivan, J. Joseph, T. J. Givinish, K. J. Systma &J. C. Pires. 2000. Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. Pages 3–16.In: K. L. Wilson & D. A. Morrison, editors. Monocots: systematics and evolution. Vol. 1. Proceedings of the Second International Conference on the Comparative Biology of the Monocots, Sydney. CSIRO Publishing, Melbourne.Google Scholar
  14. Chun, W.-Y. 1940. Additions to the flora of Kwangtung and SE China, III. Sunyatsenia 4: 169–271.Google Scholar
  15. Cronquist, A. 1968. The evolution and classfication of flowering plants. Houghton Mifflin, Boston.Google Scholar
  16. — 1981. An integrated system of classification of the flowering plants. Columbia University Press, New York.Google Scholar
  17. — 1988. The evolution and classification of flowering plants, 2nd ed. The New York Botanical Garden, New York.Google Scholar
  18. Dahlgren, R. M. T., H. T. Clifford &P. F. Yeo. 1985. The families of the monocotyledons. Structure, evolution and taxonomy. Springer-Verlag, Berlin.Google Scholar
  19. DePamphilis, C. &J. Palmer. 1990. Loss of photo-synthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348: 337–339.PubMedCrossRefGoogle Scholar
  20. Engler, A. 1888. Liliaceae. Pages 10–22.In: A. Engler & K. Prantl, editors. Die natürlichen Pflanzenfamilien. Engelmann Verlag, Leipzig.Google Scholar
  21. Furness, C. A. &P. J. Rudall. 1999. Microsporogenesis in monocotyledons. Ann. Bot. (London) 84: 475–499.CrossRefGoogle Scholar
  22. —— &A. Eastman. 2002. Contribution of pollen and tapetal characters to the systematics of Triuridaceae. Pl. Syst. Evol. 235: 209–218.CrossRefGoogle Scholar
  23. Fuse, S. &M. N. Tamura. 2000. A phylogenetic analysis of the plastid matK gene with emphasis on Melanthiaceae sensu lato. Plant Biol. 2: 415–427.CrossRefGoogle Scholar
  24. Gandolfo, M. A., K. C. Nixon, W. L. Crepet, D. W. Stevenson &E. M. Friis. 1998. Oldest known fosils of monocotyledons. Nature 394: 532–533.CrossRefGoogle Scholar
  25. Groom, P. 1892. On the embryo ofPetrosavia Beccari. Ann. Bot. (London) 6: 380–382.Google Scholar
  26. — 1895. On a new saprophytic monocotyledon. Ann. Bot. (London) 9: 45–58.Google Scholar
  27. Hutchinson, J. 1933.Petrosavia andProtolirion. Bull. Misc. Inform Royal Gardens Kew. 1933: 156–157.CrossRefGoogle Scholar
  28. — 1934. The families of flowering plans arranged according to a new system based on their probable phylogeny, Vol. 2. MacMillan and Co., London.Google Scholar
  29. — 1959. The families of flowering plants. Vol. 2. Monocotyledons. Clarendon Press, Oxford.Google Scholar
  30. Krause, K. 1929. Zwei für China neue Liliaceengatlungen. Notizbl. Bot. Gart. Mus. Berlin-Dahlem 98(10): 806–807.CrossRefGoogle Scholar
  31. — 1930. Liliaceae. Pages 227–260.In: A. Engler & K. Prantl, editors. Die natürlichen Pflanzenfamilien 2(15a): 227–390. Engelmann Verlag, Leipzig.Google Scholar
  32. Kurosawa, S. 1980. Cytotaxonomic study on the spermatophytes in the Ose region. Pages 46–48.In: H. Hara, editor. Comprehensive research study of Osegahara and its allied area. Monbusho Scientific Research Program, Tokyo.Google Scholar
  33. Leake, J. R. 1994. The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol. 127: 171–216.CrossRefGoogle Scholar
  34. Lecomte, H. 1934. Flore générale de l'Indo-Chine. Vol. 6. Masson, Paris.Google Scholar
  35. Makino, T. 1903. Observations of the flora of Japan. Bot. Mag. (Tokyo) 17: 144–208.Google Scholar
  36. Nakai, T. 1930. Plantae Japonicae and Koreanae. Bot. Mag. (Tokyo) 44: 22–23.Google Scholar
  37. — 1941. Notulae ad, Plantae Asiae Orientalis (XVI). J. Jap. Bot. 17: 189–191.Google Scholar
  38. Ohba, H. 1984. A review ofPetrosavia (Liliaceae), with special reference to the floral features. J. Jap. Bot. 59: 106–110.Google Scholar
  39. Prychid, C. J. &P. J. Rudall. 1999. Calcium oxalate crystals in monocotyledons: structure and systematics. Ann. Bot. (London) 84: 725–739.CrossRefGoogle Scholar
  40. Rübsamen-Weustenfeld, T. 1991. Morphologische, embryologische und systematische Untersuchungen an Triuridaceae. Biblioth. Bot. 140: 1–113.Google Scholar
  41. Rudall, P. J. 2002. Homologies of inferior ovaries and septal nectaries in monocotyledons. Int. J. Plant Sci. 163: 261–276.CrossRefGoogle Scholar
  42. Sato, D. 1942. Karyotype alteration and phylogeny in Liliaceae and allied families. Jap. J. Bot. 12: 57–161.Google Scholar
  43. Soltis, D. E., P. S. Soltis, M. W. Chase, M. E. Mort, D. C. Albach, M. Zanis, V. Savolainen, W. H. Hahn, S. B. Hoot, M. F. Fay, M. Axtell, S. M. Swensen, K. C. Nixon &J. S. Farris. 2000. Angiosperm phylogeny inferred from 18S rDNA,rbcL, andatpB sequences. Bot. J. Linn. Soc. 133: 381–461.CrossRefGoogle Scholar
  44. Stant, M. Y. 1970. Anatomy ofPetrosavia stellaris Becc., a saprophytic monocotyledon. Pages 147–161.In: N. K. B. Robson, D. F. Cutler & M. Gregory, editors. New research in plant anatomy. Bot. J. Linn. Soc., Supplement 1.Google Scholar
  45. Sterling, C. 1978. Comparative morphology of the carpel in the Liliaceae: Hewardieae, Petrosavieae, and Tricyrteae. Bot. J. Linn. Soc. 77: 95–106.CrossRefGoogle Scholar
  46. Takahashi, M. &S. Kawano. 1989. Pollen morphology of the Melanthiaceae and its systematic implications. Ann. Missouri Bot. Gard. 76: 863–876.CrossRefGoogle Scholar
  47. Takhtajan, A. L. 1996. Validation of some previously described families of flowering plants. Bot. Zhurn. (Moscow & Leningrad) 81: 85–86.Google Scholar
  48. — 1997. Diversity and classification of flowering plants. Columbia University Press, New York.Google Scholar
  49. Tamura, M. N. &H. Takahashi. 1998. Karyotype analysis of the saprophytePetrosavia sakuraii (Makino) J.J. Smith ex van Steenis and its systematic implications. Acta Phytotax. Geobot. 49: 49–56.Google Scholar
  50. — 1998. Nartheciaceae. Pages 381–392.In: K. Kubitzki, editor. The families and genera of vascular plants. Springer-Verlag, Berlin.Google Scholar
  51. Tatewaki, M. 1931. A new liliaceous species from Hokkaido. J. Jap. Bot. 7: 5.Google Scholar
  52. Thorne, R. F. 1992. Classification and geography of the flowering plants. Bot. Rev. 58: 225–348.Google Scholar
  53. Tomlinson, P. B. 1982. Anatomy of the Monocotyledons, Vol. 7. Clarendon Press, Oxford.Google Scholar
  54. Utech, F. H. 1984. Floral vascular anatomy ofJaponolirion osense Nakai (Liliaceae) and its tribal relationship. Ann. Carnegie Mus. 53: 447–461.Google Scholar
  55. Zomlefer, W. B. 1997. The genera of Tofieldiaceae in the southwestern United States. Harvard Pap. Bot. 2: 179–194.Google Scholar

Copyright information

© The New York Botanical Garden Press 2003

Authors and Affiliations

  • Kenneth M. Cameron
    • 1
  • Mark W. Chase
    • 2
  • Paula J. Rudall
    • 2
  1. 1.The Lewis B. and Dorothy Cullman Program for Molecular Systematics StudiesThe New York Botanical GardenBronxU.S.A.
  2. 2.Jodrell LaboratoryRoyal Botanic Gardens, KewRichmondU.K.

Personalised recommendations