The Botanical Review

, Volume 69, Issue 2, pp 173–201 | Cite as

Demographic trends in the Cactaceae

  • Héctor Godínez-Álvarez
  • Teresa Valverde
  • Pablo Ortega-Baes

Abstract

Although our biological knowledge regarding cactus species is thorough in many areas, only in recent years have ecologists addressed their demographic behavior. Here we attempt a first review of the present knowledge on cactus demography, including an analysis of the published information on species with different growth forms and life-history traits. Our review shows that cactus distribution ranges are determined by environmental heterogeneity and by species-specific physiological requirements. Temperature extremes may pose latitudinal and altitudinal distribution limits. At a more local scale, soil properties dramatically affect cactus distribution. Most cacti show a clumped spatial distribution pattern, which may be the reflection of a patchy resource distribution within their heterogeneous environments. The association of cacti with nurse plants is another factor that may account for this aggregated distribution. Many cacti grow in association with these perennial nurse plants, particularly during early life-cycle phases. The shade provided by nurse plants results in reduced evapotranspiration and buffered temperatures, which enhance cactus germination and establishment. In some cases a certain degree of specificity has been detected between particular cactus species and certain nurse plants. Yet some globose cacti may establish in the absence of nurse plants. In these cases, rocks and other soil irregularities may facilitate germination and establishment.

Cacti are slow-growing species. Several abiotic factors, such as water and nutrient availability, may affect their growth rate. Competition and positive associations (i.e., mycorrhizae and nurse-cacti association) may also affect growth rate. Age at first reproduction varies greatly in relation to plant longevity. In general, cactus reproductive capacity increases with plant size. Populations are often composed of an uneven number of individuals distributed in the different size categories. This type of population structure reflects massive but infrequent recruitment events, apparently associated with benign periods of abundant rainfall.

A few cactus species have been analyzed through the use of population-projection matrices. A total of 17 matrices were compiled and compared. Most of them reflect populations that are close to the numerical equilibrium (λ = close to unity). Elasticity analyses revealed that the persistence of individuals in their current size category (“stasis”) is the demographic process that contributes the most to population growth rate. Also, adult categories (rather than juveniles or seedlings) show the largest contributions to λ. No differences were apparent regarding this matter between cacti with different life-forms. This review shows that our knowledge of cactus population ecology is still incipient and rather unevenly distributed: some topics are well developed; for others the available information is still very limited. Our ability to preserve the great number of cactus species that are now endangered depends on our capacity to deepen our ecological understanding of their population processes.

Resumen

A pesar de que nuestro conocimiento biológico sobre las cactáceas es basto en muchas áreas, ha sido sólo hasta fechas recientes que los ecólogos han abordado el estudio de su comportamiento demográfico. En este artículo presentamos una primera revisión del conocimiento actual sobre demografía de cactáceas, incluyendo un análisis de la información publicada sobre especies con diferentes formas de crecimiento y características de historia de vida. Nuestra revisión muestra que el área de distribución de las cactáceas se ve afectada por la heterogeneidad del ambiente y por los requerimientos fisiológicos de cada especie. Los valores extremos de temperatura fijan límites latitudinales y altitudinales de distribución a muchas cactáceas. A una escala más local, las propiedades del suelo juegan un papel fundamental. La mayoría de los cactus muestran una distribución espacial agregada, lo cual es un reflejo de la distribución aparchonada de los recursos en los ambientes altamente heterogéneos que habitan. La asociación de los cactus con plantas nodriza es otro de los factores que explica su distributión agregada. Muchos cactus crecen en asociación con estas plantas nodriza, particularmente durante los primeras estadios. La sombra de estas plantas perennes reduce la evapotranspiración y amortigua la temperature, lo cual incrementa la germinatión y el establecimiento de los cactus. En algunos casos se ha detectado especificidad entre especies particulares de cactus y ciertas plantas nodriza. Aun así, algunos cactos globosos pueden establecerse en ausencia de plantas nodrizas. En estos casos, las rocas y otras irregularidades del terreno podrían facilitar la germinatión y el establecimiento.

Los cactus son especies de lento crecimiento. Varios factores abióticos, como el agua y la disponibilidad de nutrientes, pueden afectar su tasa de crecimiento. La competencia y las asociaciones positivas (i.e., formatión de micorrizas y asociación con plantas nodriza) también pueden afectar su tasa de crecimiento. La edad a la primera reproductión varía mucho con relatión a la longevidad de las plantas. En general, la capacidad reproductiva de los cactus aumenta conforme aumenta su tamano. Las poblaciones frecuentemente están compuestas de individuos distribuidos de manera irregular entre las diferentes clases de tamaño. Este tipo de estructura poblacional refleja eventos masivos pero poco frecuentes de reclutamiento, aparentemente asociados a periodos benignos de abundantes lluvias.

Sólo unas cuantas especies de cactus se han estudiado a través de matrices de proyección poblacional. En este estudio se compilaron y se compararon 17 matrices. La mayoria de ellas reflejan poblaciones que se encuentran cerca del equilibrio numérico (λ = cerca de la unidad). Los análisis de elasticidad revelaron que la persistencia de los individuos en su misma categoría de tamaño (“estasis”) es el proceso demográfico que mayormente contribuye a la tasa de crecimiento poblacional. También se vio que las categorías de adultos (y no las de juveniles o plántulas) fueron las que mostraron un mayor aporte a λ. No se encontraron diferencias a este respecta entre especies de cactus con diferente forma de crecimiento. Esta revisión muestra que nuestro conocimiento sobre la ecologia poblacional de los cactus es aún incipiente y está distribuido de manera dispareja: algunos temas están bien desarrollados mientras que para otros la informatión disponible es aún muy limitada. La posibilidad de conservar el gran numéro de especies de cactáceas que se encuentran amenazadas depende de nuestra capacidad para profundizar en el entendimiento ecológico de sus procesos poblacionales.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Altesor, A., E. Ezcurra &C. Silva. 1992. Changes in the photosynthetic metabolism during the early ontogeny of four cactus species. Acta Oecol. 13: 777–785.Google Scholar
  2. Anderson, E. F., S. Arias Montes &N. P. Taylor. 1994. Threatened cacti of Mexico. Royal Botanical Gardens, Kew, England.Google Scholar
  3. Arriaga, L., Y. Maya, S. Diaz &J. Cancino. 1993. Association between cacti and nurse perennials in a heterogeneous tropical dry forest in northwestern Mexico. J. Veg. Sci. 4: 349–356.Google Scholar
  4. Bierzychudek, P. 1982. Life histories and demography of shade-tolerant temperate forest herbs: A review. New Phytol. 90: 757–776.Google Scholar
  5. Bowers, J. E. 1996a. Growth rate and life span of a prickly pear cactus,Opuntia engelmannii, in the northern Sonoran desert. Southw. Naturalist 41: 315–318.Google Scholar
  6. —. 1996b. Environmental determinants of flowering date in the columnar cactusCarnegiea gigantea in the Sonoran Desert. Madrono 43: 69–84.Google Scholar
  7. —. 1996c. More flowers or new cladodes? Environmental correlates and biological consequences of sexual reproduction in a Sonoran Desert prickly pear cactus,Opuntia engelmannii. Bull. Torrey Bot. Club 123: 34–40.Google Scholar
  8. —. 1997a. The effect of drought on Engelmann prickly pear (Cactaceae:Opuntia engelmannii) fruit and seed production. Southw. Naturalist 42: 240–242.Google Scholar
  9. —. 1997b. Demographic patterns ofFerocactus cylindraceus in relation to substrate age and grazing history. Pl. Ecol. 133: 37–48.Google Scholar
  10. —. 2000. DoesFerocactus wislizeni (Cactaceae) have a between-year seed bank? J. Arid Environm. 45: 197–205.Google Scholar
  11. —,R. H. Webb &R. J. Rondeau. 1995. Longevity, recruitment and mortality of desert plants in Grand Canyon, Arizona, USA. J. Veg. Sci. 6: 551–564.Google Scholar
  12. Bravo-Hollis, H. &H. Sánchez-Mejorada. 1978. Las Cactáceas de México. Vol. 1. Universidad Nacional Autónoma de México, Mexico City.Google Scholar
  13. ——. 1991. Las Cactáceas de México. Vols. 2–3. Universidad Nacional Autónoma de México, Mexico City.Google Scholar
  14. Breckenridge, F. G., III &J. M. Miller. 1982. Pollination biology, distribution, and chemeotaxonomy of theEchinocereus enneacanthus complex (Cactaceae). Syst. Bot. 7: 365–378.Google Scholar
  15. Briones, O., C. Montaña &E. Ezcurra. 1998. Competition intensity as a function of resource availability in a semiarid ecosystem. Oecologia 116: 365–372.Google Scholar
  16. Callaway, R. M. 1995. Positive interactions among plants. Bot. Rev. (Lancaster) 61: 306–349.Google Scholar
  17. —. 1998. Are positive interactions species-specific? Oikos 82: 202–207.Google Scholar
  18. Carrillo-García, A., Y. Bashan &G J. Bethlenfalvay. 2000. Resource-island soils and the survival of the giant cactus, cardon, of Baja California Sur. Pl. & Soil 218: 207–214.Google Scholar
  19. Casas, A., A. Valiente-Banuet, A. Rojas-Martinez &P. Dávila. 1999. Reproductive biology and the process of domestication of the columnar cactusStenocereus stellatus in central Mexico. Amer. J. Bot. 86: 534–542.Google Scholar
  20. Cody, M. L. 1993. Do cholla (Opuntia spp., Subgenus Cylindropuntia) use or need nurse plants in the Mojave Desert? J. Arid Environm. 24: 139–154.Google Scholar
  21. —. 2000. Slow-motion population dynamics in Mojave Desert perennial plants. J. Veg. Sci. 11: 351–358.Google Scholar
  22. Contreras, C. &T. Valverde. 2002. Evaluation of the conservation status of a rare cactus (Mammillaria crucigera) through the analysis of its population dynamics. J. Arid Environm. 51: 89–102.Google Scholar
  23. De Kroon, H., H. Plaiser, J. van Groenendael &H. Caswell. 1986. Elasticity: The relative contribution of demographic parameters to population growth rate. Ecology 67: 1427–1431.Google Scholar
  24. ——. 2000. Elasticities: A review of methods and model limitations. Ecology 81: 607–618.Google Scholar
  25. De Viana, M. L. 1996–1997. Distributión espacial deTrichocereus pasacana (Cactaceae) en relación al espacio disponible y al banco de semillas. Revista Biol. Trop. 44/45: 95–103.Google Scholar
  26. —,N. Acreche, R. Acosta &L. Morana. 1990. Población y asociaciones deTrichocereus pasacana (Cactaceae) en Los Cardones, Argentina. Revista Biol. Trop. 38: 383–386.Google Scholar
  27. —,S. Sühring &B. F. J. Manly. 2001. Application of randomization methods to study the association ofTrichocereus pasacana (Cactaceae) with potential nurse plants. Pl. Ecol. 156: 193–197.Google Scholar
  28. Dubrovsky, J. G. 1996. Seed hydration memory in Sonoran Desert cacti and its ecological implication. Amer. J. Bot. 83: 624–632.Google Scholar
  29. —. 1998. Discontinuous hydration as a facultative requirement for seed germination in two cactus species of the Sonoran Desert. J. Torrey Bot. Soc. 125: 33–39.Google Scholar
  30. Esparza-Olguin, L., T. Valverde &E. Vilchis-Anaya. 2002. Demographic analysis of a rare columnar cactus (Neobuxbaumia macrocephala) in the Tehuacan Valley, Mexico. Biol. Con. 103: 349–359.Google Scholar
  31. Figueira, J. E. C., J. Vasconcellos-Neto, M. A. Garcia &A. L. Teixeira de Souza. 1994. Saurocory inMelocactus violaceus (Cactaceae). Biotropica 26: 295–301.Google Scholar
  32. Fleming, T. H. &A. Valiente-Banuet (eds.). 2002. Columnar cacti and their mutualists: Evolution, ecology, and conservation. University of Arizona Press, Tucson.Google Scholar
  33. —,C. T. Sahley, J. N. Holland, J. D. Nason &J. L. Hamrick. 2001. Sonoran Desert columnar cacti and the evolution of generalized pollination systems. Ecol. Monogr. 71: 511–530.Google Scholar
  34. Flores, F. J. L. &R. I. Yeaton. 2000. La importancia de la competencia en la organization de las comunidades vegetales en el altiplano mexicano. Interciencia (Caracas) 25: 365–371.Google Scholar
  35. Flores, J. &O. Briones. 2001. Plant life-form and germination in a Mexican inter-tropical desert: Effects of soli water potential and temperature. J. Arid Environm. 47: 485–497.Google Scholar
  36. Flores-Martinez, A., E. Ezcurra &S. Sanchez-Colón. 1994. Effect ofNeobuxbaumia tetetzo on growth and fecundity of its nurse plantMimosa luisana. J. Ecol. 82: 325–330.Google Scholar
  37. ———. 1998. Water availability and the competitive effect of a columnar cactus on its nurse plant. Acta Oecol. 19: 1–8.Google Scholar
  38. Franco, A. C. &P. S. Nobel. 1989. Effect of nurse plants on the microhabitat and growth of cacti. J. Ecol. 77: 870–886.Google Scholar
  39. Garcia-Moya, E. &M. C. McKell. 1970. Contribution of shrubs in the economy of a desert-wash plant community. Ecology 51: 81–88.Google Scholar
  40. Gibson, A. C. &P. S. Nobel. 1986. The cactus primer. Harvard Univ. Press. Cambridge, MA.Google Scholar
  41. Godinez-Álvarez, H. &A. Valiente-Banuet. 1998. Germination and early seedling growth of Tehuacan Valley cacti species: The role of soils and seed ingestion by dispersers on seedling growth. J. Arid Environm. 39: 21–31.Google Scholar
  42. —— &B. L. Valiente. 1999. Biotic interactions and the population dynamics of the longlived columnar cactusNeobuxbaumia tetetzo in the Tehuacán Valley, Mexico. Canad. J. Bot. 77: 203–208.Google Scholar
  43. —— &A. Rojas-Martínez. 2002. The role of seed dispersers in the population dynamics of the columnar cactusNeobuxbaumia tetetzo. Ecology 83: 2617–2629.Google Scholar
  44. Goldberg, D. E. &R. M. Turner. 1986. Vegetation change and plant demography in permanent plots in the Sonoran Desert. Ecology 67: 695–712.Google Scholar
  45. Grant, V., K. A. Grant &P. D. Hurd Jr. 1979. Pollination ofOpuntia lindheimeri and related species. Pl. Syst. Evol. 132: 313–320.Google Scholar
  46. Grime, J. P. 1979. Plant strategies and vegetation processes. Wiley, Chichester.Google Scholar
  47. Gulmon, S. L., P. W. Rundel, J. R. Ehleringer &H. A. Mooney. 1979. Spatial relationships and competition in a Chilean desert cactus. Oecologia 44: 40–43.Google Scholar
  48. Hainan, O. 2001. Demographic studies of three indigenous stand-forming plant taxa (Scalesia, Opuntia, andBursera) in the Galapagos Islands, Ecuador. Biodiv. & Conserv. 10: 223–250.Google Scholar
  49. Hastings, J. R. &S. M. Alcorn. 1961. Physical determinations of growth and age in the giant cactus. J. Ariz. Acad. Sci. 2: 32–39.Google Scholar
  50. Hernandez, H. M. &H. Godinez-Alvarez. 1994. Contribución al conocimiento de las Cactáceas mexicanas amenazadas. Acta Bot. Mex. 26: 33–52.Google Scholar
  51. Hicks, D. J. &A. Mauchamp. 2000. Population structure and growth patterns ofOpuntia echios var.gigantea along an elevational gradient in the Galapagos Islands. Biotropica 32: 235–243.Google Scholar
  52. Horvitz, C. C. &D. W. Schemske. 1995. Spatiotemporal variation in demographic transitions of a tropical understorey herb: Projection matrix analysis. Ecol. Monogr. 65: 155–192.Google Scholar
  53. Huerta, F. M. &V. E. Escobar. 1998. Estatus ecológico actual deFerocactus hystrix (DC) Lindsay en los Llanos de Ojuelos, Jalisco-Zacatecas. Cact. Suc. Mex. 43: 57–64.Google Scholar
  54. Hunt, D. (comp.). 1999. C.I.T.E.S. Cactaceae checklist. Ed. 2. Royal Botanic Gardens & International Organization for Succulent Plant Study, Kew, England.Google Scholar
  55. Hutto, R. L., J. R. McAuliffe &L. Hogan. 1986. Distributional associates of the saguaro (Carnegiea gigantea). Southw. Naturalist 31: 469–476.Google Scholar
  56. Johnson, R. A. 1992. Pollination and reproductive ecology of Acuña cactus,Echinomastus erectrocentrus var.acunensis (Cactaceae). Int. J. Pl. Sci. 153: 400–408.Google Scholar
  57. —,M. A. Baker, D. J. Pinkava &G A. Ruffner. 1992. Seedling establishment, mortality and flower production of the Acuna cactus,Echinomastus eretrocentrus var.acunensis (Cactaceae). Pp. 170–180in R. Sivinski & K. Lightfoot (eds.), Southwestern rare and endangered plants: Proceedings of the Southwestern Rare and Endangered Plant Conference. New Mexico Forestry and Resources Conservation Division, Energy, Minerals and Natural Resources Department, Santa Fe, NM.Google Scholar
  58. Jordan, P. W. &P. S. Nobel. 1981. Seedling establishment ofFerocactus acanthodes in relation to drought. Ecology 62: 901–906.Google Scholar
  59. ——. 1982. Height distribution of two species of cacti in relation to rainfall, seedling establishment, and growth. Bot. Gaz. 143: 511–517.Google Scholar
  60. Larmuth, J. &H. J. Harvey. 1978. Aspects of the occurrence of desert plants. J. Arid Environm. 1: 129–133.Google Scholar
  61. Leirana-Alcocer, J. &V. Parra-Tabla. 1999. Factors affecting the distribution, abundance and seedling survival ofMammillaria gaumeri, an endemic cactus of coastal Yucatán, Mexico. J. Arid Environm. 41: 421–428.Google Scholar
  62. León de la Luz, J. L. &R. D. Cadena. 1991. Evaluatión de la reproductión por semilla de la pitaya agria (Stenocereus gummosus) en Baja California Sur, México. Acta Bot. Mex. 14: 75–87.Google Scholar
  63. Lockwood, M. W. 1995. Notes on life history ofAncistrocactus tobuschii (Cactaceae) in Kinney County, Texas. Southw. Naturalist 40: 428–430.Google Scholar
  64. Mandujano, M. C., C. Montana &L. Eguiarte. 1996. Reproductive ecology and inbreeding depression inOpuntia rastrera (Cactaceae) in the Chihuahuan Desert: Why are sexually derived recruitments so rare?. Amer. J. Bot. 83: 63–70.Google Scholar
  65. ——,I. Méndez &J. Golubov. 1998. The relative contributions of sexual reproduction and clonal propagation inOpuntia rastrera from two habitats in the Chihuahuan Desert. J. Ecol. 86: 911–921.Google Scholar
  66. ——,M. Franco, J. Golubov &A. Flores-Martinez. 2001. Integration of demographic annual variability in a clonal desert cactus. Ecology 82: 344–359.Google Scholar
  67. Martínez, D., A. Flores-Martínez, F. López &G Manzanero. 2001. Aspectos ecológicos deMammillaria oteroi Glass & R. Foster en la región mixteca de Oaxaca, México. Cact. Suc. Mex. 46: 32–39.Google Scholar
  68. Martínez, J. G., H. Suzán &C. A. Salazar. 1993. Aspectos ecológicos y demográficos deAriocarpus trigonus (Weber) Schumann. Cact. Suc. Mex. 38: 30–38.Google Scholar
  69. ———. 1994. Aspectos ecológicos y demográficos deNeolloydia pseudopectinata (Backeberg) E. F. Anderson. Cact. Suc. Mex. 39: 27–33.Google Scholar
  70. Martínez-Ramos, M. &E. Álvarez-Buylla. 1995. Ecología de poblaciones de plantas de una selva húmeda de México. Bol. Soc. Bot. México 56: 121–153.Google Scholar
  71. McAuliffe, J. R. 1984a. Sahuaro-nurse tree associations in the Sonoran Desert: Competitive effects of sahuaros. Oecologia 64: 319–321.Google Scholar
  72. —. 1984b. Prey refugia and the distributions of two sonoran desert cacti. Oecologia 65: 82–85.Google Scholar
  73. — &F. J. Janzen. 1986. Effects of intraspecific crowding on water uptake, water storage, apical growth, and reproductive potential in the sahuaro cactus,Carnegiea gigantea. Bot. Gaz. 147: 334–341.Google Scholar
  74. McFarland, J. D., P. G. Kevan &M. A. Lane. 1989. Pollination biology ofOpuntia imbricata (Cactaceae) in southern Colorado. Canad. J. Bot. 67: 24–28.Google Scholar
  75. McIntosh, M. E. 2002. Flowering phenology and reproductive output in two sister species ofFerocactus (Cactaceae). Pl. Ecol. 159: 1–13.Google Scholar
  76. Meyrán, J. 1980. Guía botánica de Cactáceas y otras suculentas del Valle de Tehuacán. Sociedad Mexicana de Cactología A.C., Mexico City.Google Scholar
  77. Mourelle, C. &E. Ezcurra. 1997. Differentiation diversity of Argentine cacti and its relationship to environmental factors. J. Veg. Sci. 8: 547–558.Google Scholar
  78. Nassar, J. M., N. Ramírez &O. Linares. 1997. Comparative pollination biology of Venezuelan columnar cacti and the role of nectar-feeding bats in their sexual reproduction. Amer. J. Bot. 84: 918–927.Google Scholar
  79. Negrón-Ortiz, V. 1998. Reproductive biology of a rare cactus,Opuntia spinosissima (Cactaceae), in the Florida Keys: Why is seed set very low?. Sexual Pl. Reprod. 11: 208–212.Google Scholar
  80. Niering, W. A., R. H. Whittaker &C. H. Lowe. 1963. The saguaro: A population in relation to environment. Science 142: 15–23.PubMedGoogle Scholar
  81. Nobel, P. S. 1980. Morphology, nurse plant and minimum apical temperatures for youngCarnegiea gigantea. Bot. Gaz. 141: 188–191.Google Scholar
  82. —. 1988. Environmental biology of agaves and cacti. Cambridge University Press. Cambridge, MA.Google Scholar
  83. —. 1989. Temperature, water availability, and nutrient levels at various soil depths: Consequences for shallow-rooted desert succulents, including nurse plant effects. Amer. J. Bot. 76: 1486–1489.Google Scholar
  84. —,G N. Geller, S. C. Kee &A. D. Zimmerman. 1986. Temperatures and thermal tolerances for cacti exposed to high temperatures near the soil surface. Pl. Cell Environ. 9: 279–287.Google Scholar
  85. Nolasco, H., F. Vega-Villasante &A. Díaz-Rondero. 1997. Seed germination ofStenocereus thurberi (Cactaceae) under different solar irradiation levels. J. Arid Environm. 36: 123–132.Google Scholar
  86. Noy-Meir, I. 1973. Desert ecosystems: Environment and producers. Annual Rev. Ecol. Syst. 4: 25–51.Google Scholar
  87. —. 1974. Desert ecosystems: higher trophic levels. Annual Rev. Ecol. Syst. 5: 195–214.Google Scholar
  88. —. 1979/1980. Structure and function of desert ecosystems. Israel J. Bot. 28: 1–19.Google Scholar
  89. Ortega-Baes, P. F. 2001. Demografía de la cactácea columnarEscontria chiotilla. M.S. thesis, Universidad Nacional Autónoma de México, Mexico City.Google Scholar
  90. Osborn, M. M., P. G. Kevan &M. A. Lane. 1988. Pollination biology ofOpuntia polyacantha andOpuntia phaeacantha (Cactaceae) in southern Colorado. Pl. Syst. Evol. 159: 85–94.Google Scholar
  91. Parker, K. C. 1987. Seedcrop characteristics and minimum reproductive size of organ pipe cactus (Stenocereus thurberi) in southern Arizona. Madroño 34: 294–303.Google Scholar
  92. —. 1988a. Environmental relationships and vegetation associates of columnar cacti in the northern Sonoran Desert. Vegetatio 78: 125–140.Google Scholar
  93. —. 1988b. Growth rates ofStenocereus thurberi andLophocereus schottii in southern Arizona. Bot. Gaz. 149: 335–346.Google Scholar
  94. —. 1989. Height structure and reproductive characteristics of Senita,Lophocereus schottii (Cactaceae), in southern Arizona. Southw. Naturalist 34: 392–401.Google Scholar
  95. —. 1991. Topography, substrate, and vegetation patterns in the northern Sonoran Desert. J. Biogeogr. 18: 151–163.Google Scholar
  96. —. 1993. Climatic effects on regeneration trends for two columnar cacti in the northern Sonoran Desert. Ann. Assoc. Amer. Geogr. 83: 452–474.Google Scholar
  97. — &J. L. Hamrick. 1992. Genetic diversity and clonal structure in a columnar cactus,Lophocereus schottii. Amer. J. Bot. 79: 86–96.Google Scholar
  98. Pearl, R. 1928. The rate of living, being an account of some experimental studies on the biology of life duration. Knopf, New York..Google Scholar
  99. Pierson, E. A. &R. M. Turner. 1998. An 85-year study of saguaro (Carnegiea gigantea) demography. Ecology 79: 2676–2693.Google Scholar
  100. Pimienta, E., G. Hernández, A. Domingues &P. S. Nobel. 1998. Growth and development of the arborescent cactusStenocereus queretaroensis in a subtropical semiarid environment, including effects of gibbberellic acid. Tree Physiol. 18: 59–64.PubMedGoogle Scholar
  101. Reid, W., R. Lozano &R. Odom. 1983. Non-equilibrium population structure in three Chihuahuan Desert cacti. Southw. Naturalist 28: 115–117.Google Scholar
  102. Rincón, E., P. Huante &Y. Ramírez. 1993. Influence of vesicular-arbuscular mycorrhizae on biomass production by the cactusPachycereus pecten-aboriginum. Mycorrhiza 3: 79–81.Google Scholar
  103. Rodriguez-Ortega, C. E. &E. Ezcurra. 2001. Distribución espacial en el hábitat deMammillaria pectinifera yM. carnea en el Valle de Zapotitlán Salinas, Puebla, México. Cact. Suc. Mex. 45: 4–14.Google Scholar
  104. — &M. Franco. 2001. La retención de semillas en el géneroMammillaria. Cact. Suc. Mex. 46: 63–67.Google Scholar
  105. Rojas-Aréchiga, M. &A. Batis. 2001. Las semillas de Cactáceas ¿forman bancos en el suelo?. Cact. Suc. Mex. 46: 76–82.Google Scholar
  106. — &C. Vázquez-Yanes. 2000. Cactus seed germination: A review. J. Arid Environm. 44: 85–104.Google Scholar
  107. —,A. Casas &C. Vázquez-Yanes. 2001. Seed germination of wild and cultivatedStenocereus stellatus (Cactaceae) from the Tehuacán-Cuicatlán Valley, Central Mexico. J. Arid Environm. 49: 279–287.Google Scholar
  108. Rojas-Martínez, A., A. Valiente-Banuet, M. C. Arizmendi, A. Alcántara-Eguren &H. T. Arita. 1999. Seasonal distribution of the long-nosed bat (Leptonycteris curasoae) in North America: Does a generalized migration pattern really exist?. J. Biogeogr. 26: 1065–1077.Google Scholar
  109. Rosas-Barrera, M. L. &M. C. Mandujano. 2002. La diversidad de historias de vida de Cactáceas, aproximación por el triángulo demográfico. Cact. Suc. Mex. 47: 33–41.Google Scholar
  110. Ruedas, M., T. Valverde &S. C. Argüero. 2000. Respuesta germinativa y crecimiento temprano de plántulas deMammillaria magnimamma (Cactaceae) bajo diferentes condiciones ambientales. Bol. Soc. Bot. México 66: 25–35.Google Scholar
  111. Ruíz, A., M. Santos, J. Cavalier &P. J. Soriano. 2000. Estudio fenológico de Cactáceas en el enclave seco de la Tatacoa, Colombia. Biotropica 32: 397–407.Google Scholar
  112. Sahley, C. T. 1996. Bat and hummingbird pollination of an autotetraploid columnar cactus,Werberbaurocereus werberbaueri (Cactaceae). Amer. J. Bot. 83: 1329–1336.Google Scholar
  113. Schlindwein, C. &D. Wittmann. 1997. Stamen movements in flowers ofOpuntia (Cactaceae) favour oligolectic pollinators. Pl. Syst. Evol. 204: 179–193.Google Scholar
  114. Schmalzel, R. J., F. W. Reichenbacher &S. Rutman. 1995. Demographic study of the rareCoryphantha robbinsorum (Cactaceae) in southeastern Arizona. Madroño 42: 332–348.Google Scholar
  115. Shreve, F. 1910. The rate of establishment of the giant cactus. Pl. World 10: 235–240.Google Scholar
  116. —. 1931. Physical conditions in sun and shade. Ecology 12: 96–104.Google Scholar
  117. Silva, W. R. 1988. Ornitocoria emCereus peruvianus (Cactaceae) na Serra do Japi, Estado de Sao Paulo. Revista Brasil. Biol. 48: 381–389.Google Scholar
  118. Silvertown, J. W. 1987. Introduction to plant population ecology. Ed. 2. Longman Scientific & Technical, Essex, England.Google Scholar
  119. — &J. B. Wilson. 1994. Community structure in a desert perennial community. Ecology 75:409–417.Google Scholar
  120. —,M. Franco, I. Pisanty &A. Mendoza. 1993. Comparative plant demography: Relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. J. Ecol. 81: 465–476.Google Scholar
  121. Silvius, K. M. 1995. Avian consumers of cardon fruits (Stenocereus griseus: Cactaceae) on Margarita Island, Venezuela. Biotropica 27: 96–105.Google Scholar
  122. Spears, E. E., Jr. 1987. Island and mainland pollination ecology ofCentrosema virginianum andOpuntia stricta. J. Ecol. 75: 351–362.Google Scholar
  123. Steenbergh, W. F. &C. H. Lowe. 1969. Critical factors during the first years of life of the saguaro (Cereus giganteus) at Saguaro National Monument, Arizona. Ecology 50: 823–834.Google Scholar
  124. ——. 1977. Ecology of the saguaro: II, Reproduction, germination, establishment, growth, and survival of the young plant. Department of the Interior, National Park Service, Washington, DC.Google Scholar
  125. Suzán, H., G P. Nabhan &D. T. Patten. 1996. The importance ofOlneya tesota as a nurse plant in the Sonoran Desert. J. Veg. Sci. 7: 635–644.Google Scholar
  126. Tinoco-Ojanguren, C. &F. Molina-Freaner. 2000. Flower orientation inPachycereus pringlei. Canad. J. Bot. 78: 1489–1494.Google Scholar
  127. Tschapka, M., O. von Helversen &W. Barthlott. 1999. Bat pollination ofWeberocereus tunilla, an epiphytic rain forest cactus with functional flagelliflory. Pl. Biol. (Germany) 1: 554–559.Google Scholar
  128. Turner, R. M., S. M. Alcorn, G Olin &J. A. Booth. 1966. The influence of shade, soil, and water on saguaro seedling establishment. Bot. Gaz. 127: 95–102.Google Scholar
  129. Valiente-Banuet, A. &E. Ezcurra. 1991. Shade as a cause of the association between the cactusNeobuxbaumia tetetzo and the nurse plantMimosa luisana in the Tehuacán Valley, Mexico. J. Ecol. 79: 961–971.Google Scholar
  130. — &H. Godínez-álvarez. 2002. Population and community ecology. Pp. 91–108in P. S. Nobel (ed.), Cacti: Biology and uses. University of California Press, Berkeley.Google Scholar
  131. —,A. Bolongaro-Crevenna, O. Briones, E. Ezcurra, M. Rosas, H. Núñez, G Barnard &E. Vázquez. 1991a. Spatial relationships between cacti and nurse shrubs in a semi-arid environment in central Mexico. J. Veg. Sci. 2: 15–20.Google Scholar
  132. —,F. Vite &J. A. Zavala-Hurtado. 1991b. Interaction between the cactusNeobuxbaumia tetetzo and the nurse shrubMimosa luisana. J. Veg. Sci 2: 11–14.Google Scholar
  133. —,P. Dávila, R. J. Ortega, M. C. Arizmendi, J. L. León, A. Breceda &J. Cancino. 1995. Influencia de la evolución de una pendiente de piedemonte en una vegetación de cardonal dePachycereus pringlei en Baja California Sur, México. Investigación Geogr. Bol. 3: 101–113.Google Scholar
  134. —,M. C. Arizmendi, A. Rojas-Martínez &L. Domínguez-Canseco. 1996. Ecological relationships between columnar cacti and nectar-feeding bats in Mexico. J. Trop. Ecol. 12: 103–119.Google Scholar
  135. —,A. Rojas-Martínez, M. C. Arizmendi &P. Dávila. 1997a. Pollination biology of two columnar cacti (Neobuxbaumia mezcalaensis andNeobuxbaumia macrocephala) in the Tehuacan Valley, central Mexico. Amer. J. Bot. 84: 452–455.Google Scholar
  136. ——,A. Casas, M. C. Arizmendi &P. Dávila. 1997b. Pollination biology of two winterblooming giant columnar cacti in the Tehuacán Valley, central Mexico. J. Arid Environm. 37: 331–341.Google Scholar
  137. —,M. C. Arizmendi, A. Rojas-Martínez, A. Casas, H. Godinez-Álvarez, C. Silva &P. Dávila. 2002. Biotic interactions and population dynamics of columnar cacti. Pp. 225–240in T. H. Fleming & A. Valiente-Banuet (eds.), Columnar cacti and their mutualists: Evolution, ecology, and conservation. University of Arizona Press, Tucson.Google Scholar
  138. Valverde, T. &J. Silvertown. 1998. Spatial variation in the demography of a forest understory herb (Primula vulgaris): Projection matrix models. J. Ecol. 86: 545–562.Google Scholar
  139. —,M. L. Trejo &S. Castillo. 1999. Patrón de distribución y abundancia deMammillaria magnimamma en la reserva del pedregal de San Angel, México D. F. Cact. Suc. Mex. 44: 64–74.Google Scholar
  140. -,S. Quijas,M. López-Villavicencio & S. Castillo. In press. Population dynamics ofMammillaria magnimamma Haworth. (Cactaceae) in a Mexican lava-field. Pl. Ecol.Google Scholar
  141. Weiss, J., A. Nerd &Y. Mizrahi. 1994. Flowering behavior and pollination requirements in climbing cacti with fruit crop potential. HortScience 29: 1487–1492.Google Scholar
  142. Veaton, R. I. 1978. A cyclical relationship betweenLarrea tridentata andOpuntia leptocaulis in the northern Chihuahuan Desert. J. Ecol. 66: 651–656.Google Scholar
  143. Zavala-Hurtado, J. A. &A. Díaz-Solís. 1995. Repair, growth, age and reproduction in the giant columnar cactusCephalocereus columna-trajani (Karwinski ex. Pfeiffer) Schumann (Cactaceae). J. Arid Environm. 31: 21–31.Google Scholar

Copyright information

© The New York Botanical Garden 2003

Authors and Affiliations

  • Héctor Godínez-Álvarez
    • 1
  • Teresa Valverde
    • 2
  • Pablo Ortega-Baes
    • 3
  1. 1.Unidad de Biología, Tecnología y Prototipos Facultad de Estudios Superiores IztacalaUniversidad National Autónoma de México Avenida de los Barrios 1Los Reyes Iztacala TlalnepantlaEdo. de MéxicoMexico
  2. 2.Departamento de Ecología y Recursos Naturales Facultad de CienciasUniversidad National Autónoma de México Ciudad UniversitariaMexico City, D.F.Mexico
  3. 3.Laboratorio de Investigacions Botánicas Facultad de Ciencias NaturalesUniversidad National de Salta Buenos Aires 177SaltaArgentina

Personalised recommendations