The Botanical Review

, Volume 73, Issue 4, pp 290–302 | Cite as

A dehydration avoidance mechanism: Leaf rolling

  • Asim Kadioglu
  • Rabiye Terzi


Plants have several defense mechanisms against unfavorable environmental conditions. One of these mechanisms is leaf rolling. In this review, leaf rolling as a response to water deficit stress and biochemical changes during leaf rolling in higher plants are reported. For instance, the activities of some enzymes and osmotic substances change during leaf rolling. Leaf rolling increases drought resistance in numerous species in theGramineae as well as inCtenanthe setosa, a perennial herbaceous plant that is a suitable model for use in studies of leaf rolling.


Drought Stress Water Stress Water Deficit Stomatal Conductance Botanical Review 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Das Einrollen von Blättern als Schutz vor Austrocknung


Pflanzen besitzen Schutzmechanismen gegen ungünstige Umweltbedingungen. Einer dieser Mechanismen ist das Einrollen der Blätter. In diesem Übersichtsartikel wird erstmals über die Bedeutung des Einrollens der Blätter als Antwort auf Wassermangel und von biochemischen Änderungen während des Einrollens der Blätter bei höheren Pflanzen berichtet. Das Einrollen der Blätter ist nicht nur eine Reaktion der Pflanze auf Wassermangel, es treten auch biochemische Veränderungen zusammen mit dem Einrollen der Blätter auf. Zum Beispiel verändern sich einige Enzymaktivitäten und osmotisch-aktive Stoffe während des Einrollens der Blätter. Das Einrollen der Blätter erhöht die Widerstandsfähigkeit gegen Trockenheit bei vielen Gramineen wieCtenanthe setosa. C. setosa, eine mehrjährige krautige Pflanze, ist eine gute Modellpflanze für Untersuchungen des Einrollens der Blätter.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Altman, A. &U. Bachrach. 1981. Involvement of polyamines in plant growth and senescence. Advances Polyamine Res. 3: 365–375.Google Scholar
  2. Aphalo, P. J. &P. G. Jarvis. 1993. The boundary layer and the apparent responses of stomatal conductance to wind speed and to the mole fractions of CO2 and water vapour in the air. Pl. Cell Environm. 16:771–783.CrossRefGoogle Scholar
  3. Ayaz, F. A., A. Kadioglu &R. Turgut. 2000. Water stress effects on the content of low molecular weight carbohydrates and phenolic acids inCtenanthe setosa (Rosc.) Eichler (Marantaceae). Canad. J. PI. Sci. 80: 373–378.Google Scholar
  4. —— &A. Dogru. 2001. Leaf rolling effects on lipid and fatty acid composition inCtenanthe setosa (Marantaceae) subjected to water-deficit stress. Acta Physiol. Pl. 23: 43–47.CrossRefGoogle Scholar
  5. Bagni, N., D. Serafini-Fracassini &P. Torrigiani. 1981. Polyamines and growth in higher plants. Advances Polyamine Res. 3: 377–388.Google Scholar
  6. Barathi, P., D. Sundar &A. R. Reddy. 2001. Changes in mulberry leaf metabolism in response to water stress. Biol. Pl. 44: 83–87.CrossRefGoogle Scholar
  7. Begg, J. E. 1980. Morphological adaptation of leaves to water stress. Pp. 33–42in N. C. Turner & P. J. Kramer (eds.), Adaptation of plants to water and high temperature stress. John Wiley & Sons, New York.Google Scholar
  8. Bishop, G. J. &T. Yokota. 2001. Plants steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Pl. Cell Physiol. 42: 114–120.CrossRefGoogle Scholar
  9. Carson, D. L. &F. C. Botha. 2000. Preliminary analysis of expressed sequence tags for sugarcane. Crop Sci. 40: 1769–1779.Google Scholar
  10. Chono, M., I. Honda, H. Zeniya, K. Yoneyama, D. Saisho, K. Takeda, S. Takatsuto, T. Hoshino &Y. Watanabe. 2003. A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Pl. Physiol. 133: 1209–1219.CrossRefGoogle Scholar
  11. Clarke, J. M. 1986. Effect of leaf rolling on leaf water loss inTriticum spp. Canad. J. Pl. Sci. 66: 885–891.CrossRefGoogle Scholar
  12. Corlett, J. E., H. G. Jones, A. Masssacci &J. Masojidek. 1994. Water deficit, leaf rolling and susceptibility to photoinhibition in field grown sorghum. Physiol. Pl. 92: 423–430.CrossRefGoogle Scholar
  13. Dingkuhn, M., A. Audebert, M. P. Jones, K. Etienne &A. Sow. 1999. Control of stomatal conductance and leaf rolling inO. sativa andO. glaberrima upland rice. Field Crop Res. 61: 223–236.CrossRefGoogle Scholar
  14. Ehleringer, J. &I. Forseth. 1980. Solar tracking by plants. Science 210: 1094–1098.PubMedCrossRefGoogle Scholar
  15. Ekanayake, I. J., S. K. De Datta &P. L. Steponkus. 1993. Effect of water deficit stress on diffusive resistance, transpiration, and spikelet desiccation of rice (Oryza sativa L.). Ann. Bot. 72: 73–80.CrossRefGoogle Scholar
  16. Elstner, E. F. 1987. Metabolism of activated oxygen species. Pp. 253–315in D. D. Davies (ed.), The biochemistry of plants. Vol II. Academic Press, San Diego.Google Scholar
  17. Evans, P. T. &R. L. Malmberg. 1989. Do polyamines have roles in plant development? Annual Rev. Pl. Physiol. Pl. Molec. Biol. 40: 235–269.Google Scholar
  18. Feng, Y. L., K. F. Cao &Z. L. Feng. 2002. Thermal dissipation, leaf rolling and inactivation of PSII reaction centres inAmomum villosum. J. Trop. Ecol. 18: 865–876.CrossRefGoogle Scholar
  19. Fernandez, D. &M. Castrillo. 1999. Maize leaf rolling initiation. Photosynthetica 37: 493–497.CrossRefGoogle Scholar
  20. Flores, H. E. &A. W. Galston. 1984. Osmotic stress-induced polyamine accumulation in cereal leaves. I. Physiological parameters of response. Pl. Physiol. 75: 102–109.Google Scholar
  21. Flower, D. J., A. U. Rani &J. M. Peacock. 1990. Influence of osmotic adjustment on the growth, stomatal conductance and light interception of contrasting sorghum lines in a harsh environment. Austral. J. PL Physiol. 17: 91–105.Google Scholar
  22. Fort, C, M. L. Fauveau, F. Muller, P. Label, A. Granier &E. Dreyer. 1997. Stomatal conductance, growth and root signaling in young oak seedlings subjected to partial soil drying. Tree Physiol. 17: 281–289.PubMedGoogle Scholar
  23. Fu, J. &B. Huang. 2001. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environm. Exp. Bot. 45: 105–114.CrossRefGoogle Scholar
  24. Galston, A.W. 1983. Polyamines as modulators of plant development. BioScience 33: 382–388.CrossRefGoogle Scholar
  25. Goodwin, T.W. &E. I. Mercer. 1986. Introduction to plant biochemistry. Pergamon Press, Oxford, New York.Google Scholar
  26. Grove, M. D., G. F. Spencer, W. K. Rohwedder, N. Mandava, J. F. Worley, J. D. Warthen, G. L. Steffens, J. L. Flippen-Anderson &J. C. Cook. 1979. Brassinolide, a plant growth-promoting steroid isolated fromBrassica napus pollen. Nature 281: 216–217.CrossRefGoogle Scholar
  27. Gzik, A. 1996. Accumulation of proline and pattern of α-amino acids in sugar beet plants in response to osmotic, water and salt stress. Environm. Exp. Bot. 36: 29–38.CrossRefGoogle Scholar
  28. Hale, M. G. &D. M. Orcutt. 1987. The physiology of plants under stress. John Wiley & Sons, New York.Google Scholar
  29. Handa, A. K., P. M. Hasegawa &R. A. Bressan. 1986. Proline accumulation and the adaptation of cultured plant cells to water stress. Pl. Physiol. 80: 935–945.Google Scholar
  30. Heckathorn, S. A. &E. H. Delucia. 1991. Effect of leaf rolling on gas exchange and leaf temperature ofAndropogon gerardii andSpartina pectinata. Bot. Gaz. 152: 263–268.CrossRefGoogle Scholar
  31. Hsiao, T. C., J. C. O’Toole, E. B. Yambao &N. Turner. 1984. Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oryza sativa L.). Pl. Physiol. 75: 338–341.Google Scholar
  32. Huff, A. K. &C. W. Ross. 1975. Promotion of radish cotyledon enlargement and reducing sugar content by zeatin and red light. Pl. Physiol. 56: 429–433.Google Scholar
  33. Jarvis, P. G. &J. I. L. Morison. 1981. The control of transpiration and photosynthesis by the stomata. Pp. 247–279in P. G. Jarvis & T. A. Mansfield (eds.), Stomatal physiology. Cambridge University Press, New York.Google Scholar
  34. Jiang, C. Z., S. V. Rodermel &R. M. Shibles. 1993. Photosynthesis, rubisco activity and amount, and their regulation by transcription in senescing soybean leaves. Pl. Physiol. 101: 105–112.Google Scholar
  35. Jones, H. G. 1979. Visual estimation of plant water status in cereals. J. Agric. Sci. 92: 83–89.Google Scholar
  36. Jones, M. M. &H. M. Rawson. 1979. Influence of rate of development of leaf water deficits upon photosynthesis, leaf conductance, water use efficiency, and osmotic potential inSorghum. Physiol. Pl. 45: 103–111.CrossRefGoogle Scholar
  37. Kadioglu, A. &R. Turgut. 1999. Some biochemical changes during leaf rolling inCtenanthe setosa (Marantaceae), Acta Physiol. Pl. 21: 209–214.CrossRefGoogle Scholar
  38. ——, —— &N. Saruhan. 2002. Effect of polyamines on leaf rolling inCtenanthe setosa. Israel J. Pl. Sci. 50: 19–23.CrossRefGoogle Scholar
  39. Kamuro, Y. &S. Takatsuto. 1999. Practical application of brassinosteroids in agricultural fields. Pp. 223–241in A. Sakurai, T. Yokota & S. D. Clouse (eds.), Brassinosteroids. Springer, Tokyo.Google Scholar
  40. Kaur-Sawhney, R., L. M. Shih, H. E. Flores &A. W. Galston. 1982. Relation of polyamine synthesis and titer to ageing and senescence in oat leaves. Pl. Physiol. 69: 405–410.Google Scholar
  41. Khush, G. S. &T. Kinoshita. 1991. Rice caryotype, marker genes, and linkage groups. Pp. 83–103in G. S. Khush & G. H. Toenniessen (eds.), Rice biotechnology. IRRI, Manila.Google Scholar
  42. Knapp, A. K. 1985. Effect of fire and drought on the ecophysiology ofAndropogon gerardii andPanicum virgatum in a tallgrass prairie. Ecology 66: 1309–1320.CrossRefGoogle Scholar
  43. Kraus, T. E., B. D. McKersie &R. A. Fletcher. 1995. Paclobutrazole-induced tolerance of wheat leaves to paraquat may involve increased enzyme activity. J. Pl. Physiol. 145: 570–576.Google Scholar
  44. Kutlu, N. 2005. The investigation of biochemical levels of effect of 24-epibrassinolide on leaf rolling inCtenanthe setosa. Master’s thesis, Graduate School of Natural and Applied Sciences, Karadeniz Technical University, Trabzon, Turkey.Google Scholar
  45. Latzko, E. &G. J. Kelly. 1983. The many-faceted function of phosphoenolpyruvate carboxylase in C3 plants. Physiol. Vég. 21: 805–815.Google Scholar
  46. Lee-Stadelmann, O. Y. &E. J. Stadelmann. 1976. Cell permeability and water stress. Pp. 268–280in O. L. Lange, L. Kappen & E. D. Schulze (eds.), Water and plant life: problems and modern approaches. Springer, Berlin.Google Scholar
  47. Li, L. &J. V. Staden. 1998. Effect of plant growth regulators on the antioxidant system in callus of two maize cultivars subjected to water stress. Pl. Growth Regulat. 24: 55–66.CrossRefGoogle Scholar
  48. Liebler, D. C., D. S. Kling &D. J. Reed. 1986. Antioxidant protection of phospholipids bilayers by α-tocopherol. Control of αa-tocopherol status and lipid peroxidation by ascorbic acid and glutathione. J. Biol. Chem. 261: 12114–12119.PubMedGoogle Scholar
  49. Ludlow, M. M. 1980. Adaptive significance of stomatal responses to water stress. Pp. 123–138in N. C. Turner & P. J. Kramer (eds.), Adaptation of plants to water and high temperature stress. Wiley Interscience, New York.Google Scholar
  50. Matthews, R. B., S. N. Azam-Ali &J. M. Peacock. 1990. Response of four sorghum lines to mid-season drought: II. leaf characteristics. Field Crop Res. 25: 297–308.CrossRefGoogle Scholar
  51. McCree, K. J. &S. G. Richardson. 1987. Stomatal closure vs. osmotic adjustment: a comparison of stress responses. Crop Sci. 27: 539–543.Google Scholar
  52. Medrano, H., J. M. Escalona, J. Bota, J. Gulias &J. Flexas. 2002. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann. Bot. 89: 895–905.PubMedCrossRefGoogle Scholar
  53. Omarova, E. I., E. D. Bogdanova &F. A. Polimbetova. 1995. Regulation of water loss by the leaves of soft winter wheat with different organization of leaf structure. Fiziol. Rast. 42: 383–385.Google Scholar
  54. Oppenheimer, H. R. 1960. Plant water relationships in arid and semi-arid conditions. UNESCO, UK, pp. 105–138.Google Scholar
  55. O’Toole, J. C. &R. T. Cruz. 1980. Response of leaf water potential, stomatal-resistance, and leaf rolling to water-stress. Pl. Physiol. 65: 428–432.CrossRefGoogle Scholar
  56. —— &T. B. Moya. 1978. Genotypic variation in maintenance of leaf water potential in rice. Crop Sci. 18: 873–876.CrossRefGoogle Scholar
  57. —— &T. N. Singh. 1979. Leaf rolling and transpiration. Pl. Sci. Lett. 16: 111–114.CrossRefGoogle Scholar
  58. Premachandra, G. S., H. Saneoka, K. Fujita &S. Ogata. 1993. Water stress and potassium fertilization in field grown maize (Zea mays L.): effects of leaf water relations and leaf rolling. J. Agron. Crop Sci. 170: 195–201.CrossRefGoogle Scholar
  59. Price, A. H., E. M. Young &A. D. Tomos. 1997. Quantitative trait loci associated with stomatal conductance, leaf rolling and heading date mapped in upland rice (Oryza sativa). New Phytol. 137: 83–91.CrossRefGoogle Scholar
  60. Raskin, I. 1992. The role of salicylic acid in plants. Annual Rev. Pl. Physiol. Pl. Molec. Biol. 43: 439–463.CrossRefGoogle Scholar
  61. Rensburg, L. V. &G. H. J. Kruger. 1994. Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars ofNicotiana tabacum L. J. Pl. Physiol. 143: 730–737.Google Scholar
  62. Richards, R. A., G. J. Rebetzke, A. G. Condon &A. F. Van Herwaarden. 2002. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci. 42: 111–121.PubMedGoogle Scholar
  63. Saglam, A., A. Kadioglu, R. Terzi &N. Saruhan. 2008. Leaf rolling and biochemical changes in them in post-stress emergingCtenanthe setosa plants under drought conditions. Russ. J. Pl. Physiol. 55: 48–53.Google Scholar
  64. Saruhan, N., R. Terzi &A. Kadioglu. 2006. The effects of exogenous polyamines on some biochemical changes. Acta Biol. Hung. 57: 221–229.PubMedGoogle Scholar
  65. Sawada, S., M. Sato, A. Kasai, D. Yaochi, Y. Kameya, I. Matsumoto &M. Kasai. 2003. Analysis of the feed-forward effects of sink activity on the photosynthetic source-sink balance in single-rooted sweet potato leaves. I. Activation of RuBPcase through the development of sinks. Pl. Cell Physiol. 44: 190–197.CrossRefGoogle Scholar
  66. Shackel, K. A. &A. E. Hall. 1979. Reversible leaf movements in relation to drought adaptation of cow-peas,Vigna unguiculata (L.) Walp. Austral. J. Pl. Physiol. 6: 265–276.CrossRefGoogle Scholar
  67. Shaner, D. L. &J. S. Boyer. 1976. Nitrate reductase activity in maize (Zea mays L.) leaves. II. Regulation by nitrate flux at low leaf water potential. Pl. Physiol. 58: 505–509.Google Scholar
  68. Shaw, B., T. H. Thomas &D. T. Cooke. 2002. Responses of sugar beet (Beta vulgaris L.) to drought and nutrient deficiency stress. Pl. Growth Regulat. 37: 77–83.CrossRefGoogle Scholar
  69. Shinozaki, K. &K. Yamaguchi-Shinozaki. 1997. Gene expression and signal transduction in water-stress response. Pl. Physiol. 115: 327–334.CrossRefGoogle Scholar
  70. Singh, B. N. &D. J. Mackill. 1991. Genetics of leaf rolling under drought stress. Pp. 51–66in Rice genetics II. IRRI, Manila.Google Scholar
  71. Singh, T. N., L. G. Paleg &D. Aspinall. 1973. Stress metabolism. III. Variations in response to water deficit in the barley plant. Austral. J. Biol. Sci. 26: 65–76.Google Scholar
  72. Sinha, S. K. &D. J. D. Nicholas. 1981. Nitrate reductase. Pp. 145–169in L. G. Paleg & D. Aspinall (eds.), The physiology and biochemistry of drought resistance in plants. Academic Press, Sydney.Google Scholar
  73. Sivaramakrishnan, S., V. Z. Patell, D. J. Flower &J. M. Peacock. 1988. Proline accumulation and nitrate reductase activity in contrasting sorghum lines during mid-season drought stress. Physiol. Pl. 74:418–426.CrossRefGoogle Scholar
  74. Slocum, R. D., R. Kaur-Sawhney &A. W. Galston. 1984. The physiology and biochemistry of polyamines in plants. Arch. Biochem. Biophys. 235: 283–303.PubMedCrossRefGoogle Scholar
  75. Smirnoff, N. 1998. Plant resistance to environmental stress. Curr. Opin. Biotechnol. 9: 214–219.PubMedCrossRefGoogle Scholar
  76. Terzi, R. 2005. Investigation of the leaf rolling mechanism inCtenanthe setosa. Ph.D. diss., Graduate School of Natural and Applied Sciences, Karadeniz Technical University, Trabzon, Turkey.Google Scholar
  77. —— &A. Kadioglu 2006. Drought stress tolerance and antioxidant enzyme system inCtenanthe setosa. Acta Biol. Cracov., Ser. Bot. 48: 89–96.Google Scholar
  78. Townley-Smith, T. F. &E. A. Hurd. 1979. Testing and selecting for drought resistance in wheat. Pp. 447–464in H. Mussell & R. C. Staples (eds.), Stress physiology in crop plants. John Wiley & Sons, New York.Google Scholar
  79. Turgut, R. &A. Kadioglu. 1998. The effect of drought, temperature and irradiation on leaf rolling inCtenanthe setosa. Biol. Pl. 41: 629–663.CrossRefGoogle Scholar
  80. Turner, L. B. &G. R. Stewart. 1986. The effect of water stress upon polyamine levels in barley (Hordeum vulgare L.) leaves. J. Exp. Bot. 37: 170–177.CrossRefGoogle Scholar
  81. Turner, N. C., J. C. O’Toole, R. T. Cruz, O. S. Nambuco &S. Ahmad. 1986. Responses of seven diverse rice cultivars to water deficits. I. Stress development, canopy temperature, leaf rolling and growth. Field Crop Res. 13: 257–271.CrossRefGoogle Scholar
  82. Wada, K., H. Kondo &S. Marumo. 1985. A simple bioassay for brassinosteroids: a wheat leaf-unrolling test. Agric. Biol. Chem. 49: 2249–2251.Google Scholar

Copyright information

© The New York Botanical Garden 2007

Authors and Affiliations

  • Asim Kadioglu
    • 1
  • Rabiye Terzi
    • 1
  1. 1.Department of Biology Science and Letter FacultyKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations