Advertisement

The Botanical Review

, 73:1 | Cite as

The cleistogamous breeding system: A review of its frequency, evolution, and ecology in angiosperms

  • Theresa M. Culley
  • Matthew R. Klooster

Abstract

Cleistogamy, a breeding system in which permanently closed, self-pollinated flowers are produced, has received increasing attention in recent years, but the last comprehensive review of this system was over 20 years ago. The goal of this paper is to clarify the different types of cleistogamy, quantify the number of families, genera, and species in which cleistogamy occurs, and estimate the number of times and potential reasons why cleistogamy has evolved within angiosperms. Cleistogamous species were identified through a literature survey using 13 online databases with references dating back to 1914; only those species well-supported by floral descriptions or empirical data were included in the data set. On the basis of this survey, we suggest the use of three different categories of cleistogamy in future studies: dimorphic, complete, and induced. Based on these categories, cleistogamy in general is present in 693 angiosperm species, distributed over 228 genera and 50 families. When analyzed on a family level across the angiosperms, the breeding system has evolved approximately 34 to 41 times. Theoretical investigations indicate that the evolution of cleistogamy in taxa may be influenced by the presence of heterogeneous environments, inbreeding depression and geitonogamy, and differential seed dispersal, as well as by various ecological factors and plant size. Cleistogamy will undoubtedly be discovered in additional species as the reproductive biology of more taxa is examined in the future. Such information will be invaluable for understanding the selective pressures and factors favoring the evolution of cleistogamy as well as the evolutionary loss of this breeding system, a subject that has received little attention to date.

Keywords

Botanical Review Inbreeding Depression Breeding System Sibling Competition Angiosperm Phylogeny 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Angiosperm Phylogeny Group. 2003. An update of the Angiosperra Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399–436.CrossRefGoogle Scholar
  2. Antlfinger, A. E. 1986. Field germination and seedling growth of CH and CL progeny ofImpatiens capensis (Balsaminaceae). Amer. J. Bot. 73:1267–1273.CrossRefGoogle Scholar
  3. Ballard, H. E. 1994. Violets of Michigan. Michigan Botanist 33:131–199.Google Scholar
  4. — &D. E. Wujek. 1994. Evidence for the recognition ofViola appalachiensis. Syst. Bot. 19(4): 523–538.CrossRefGoogle Scholar
  5. —,K. J. Sytsma &R. R. Kowal. 1999. Shrinking the violets: phylogenetic relationships of infrageneric groups inViola (Violaceae) based on internal transcribed spacer DNA sequences. Syst. Bot. 23: 439–458.CrossRefGoogle Scholar
  6. Bartlett, E., S. J. Novak &R. N. Mack. 2002. Genetic variation inBromus tectorum (Poaceae): differentiation in the eastern United States. Amer. J. Bot. 89(4): 602–612.CrossRefGoogle Scholar
  7. Beardsley, P. M. &R. G. Olmstead. 2002. Redefining Phrymaceae: the placement ofMimulus, tribe Mimuleae, andPhryma. Amer. J. Bot. 89(7): 1093–1102.CrossRefGoogle Scholar
  8. Beattie, A. J. 1969. Studies in the pollination ecology ofViola. I. The pollen-content of stigmatic cavities. Watsonia 7:142–156.Google Scholar
  9. Bell, T. J. &J. A. Quinn. 1985. Relative importance of chasmogamously and cleistogamously derived seeds ofDichanthelium clandestinum (L.) Gould. Bot. Gaz. 146(2): 252–258.CrossRefGoogle Scholar
  10. ——. 1987. Effects of soil moisture and light intensity on the chasmogamous and cleistogamous components of reproductive effort ofDichanthelium clandestinum populations. Canad. J. Bot. 65: 2243–2249.CrossRefGoogle Scholar
  11. Bennington, C. C. &J.B. McGraw. 1995. Natural selection and ecotypic differentiation inImpatiens pallida. Ecol. Monogr. 65: 303–323.CrossRefGoogle Scholar
  12. Berg, H. 2003. Factors influencing seed: ovule ratios and reproductive success in four cleistogamous species: a comparison between two flower types. Pl. Biol. 5: 194–202.CrossRefGoogle Scholar
  13. — &P. Redbo-Torstensson. 1998. Cleistogamy as a bet-hedging strategy inOxalis acetosella, a perennial herb. J. Ecol. 86: 491–500.CrossRefGoogle Scholar
  14. Calvino, A. &L. Galetto. 2003. Cleistogamy in the rare high Andean perennial herbCryptantha capituliflora (Boraginaceae). Pl. Syst. Evol. 237(1-2): 41–50.CrossRefGoogle Scholar
  15. Camp, W. H. &C. L. Gilly. 1943. The structure and origin of species with a discussion of intraspecific variability and related nomenclatural problems. Brittonia 4: 323–385.CrossRefGoogle Scholar
  16. Campbell, C. S. 1982. Cleistogamy inAndropogon L. (Gramineae). Amer. J. Bot. 69(10): 1625–1635.CrossRefGoogle Scholar
  17. —,J. A. Quinn, G. P. Cheplick &T. J. Bell. 1983. Cleistogamy in grasses. Annual. Rev. Ecol. Syst. 14:411–441.CrossRefGoogle Scholar
  18. Catling, P. M. 1990. Auto-pollination in the Orchidaceae. Pp. 121–158in J. Arditti (ed.), Orchid biology, reviews and perspectives. Timber Press, Portland, Oregon.Google Scholar
  19. Charlesworth, B. &D. Charlesworth. 1978. A model for the evolution of dioecy and gynodioecy. Amer. Naturalist 112: 975–997.CrossRefGoogle Scholar
  20. Cheplick, G. P. 1996. Cleistogamy and seed heteromorphism inTriplasis purpurea (Poaceae). Bull. Torrey Bot. Club 123: 25–33.CrossRefGoogle Scholar
  21. — 2005a. Biomass partitioning and reproductive allocation in the invasive, cleistogamous grassMicrostegium vimineum: influence of the light environment. J. Torrey Bot. Soc. 132: 214–224.CrossRefGoogle Scholar
  22. — 2005b. Plasticity of chasmogamous and cleistogamous reproductive allocation in grasses. Pp. 145–155in J. T. Columbus, E. A. Friar, C. W. Hamilton, J M. Porter, L. M. Price & M. G. Simpson (eds.), Monocots: comparative biology and evolution. Rancho Santa Ana Botanical Garden, Claremont, California.Google Scholar
  23. — &K. Clay. 1989. Convergent evolution of cleistogamy and seed heteromorphism in two perennial grasses. Evol. Trends Pl. 3: 127–136.Google Scholar
  24. Clay, K. 1982. Environmental and genetic determinants of cleistogamy in a natural population of the grassDanthonia spicata. Evolution 36: 734–741.CrossRefGoogle Scholar
  25. — 1983a. Variation in the degree of cleistogamy within and among species of the grassDanthonia. Amer. J. Bot. 70(6): 835–843.CrossRefGoogle Scholar
  26. — 1983b. The differential establishment of seedlings from chasmogamous and cleistogamous flowers in natural populations of the grassDanthonia spicata (L.) Beauv. Oecologia 57: 183–188.CrossRefGoogle Scholar
  27. — &J. Antonovics. 1985. Demographic genetics of the grassDanthonia spicata: success of progeny from chasmogamous and cleistogamous flowers. Evolution 39: 205–210.CrossRefGoogle Scholar
  28. Cole, C. T. &D. D. Biesboer. 1992. Monomorphism, reduced gene flow, and cleistogamy in rare and common species ofLespedeza (Fabaceae). Amer. J. Bot. 79: 567–575.CrossRefGoogle Scholar
  29. Columbus, T. J. 1998. Morphology and leaf blade anatomy suggest a close relationship betweenBouteloua aristidoides andB. (Chondrosium) eriopoda (Gramineae: Chloroideae). Syst. Bot. 23(4): 467–478.CrossRefGoogle Scholar
  30. Connor H. E. 1979. Breeding systems in the grasses: a survey. New Zealand J. Bot. 17: 547–574.Google Scholar
  31. — 1998. Breeding systems in New Zealand grasses. XII. Cleistogamy inFestuca. New Zealand J. Bot. 36: 471–476.Google Scholar
  32. Cortes-Palomec, A. C. 2005. Ecological factors, mixed breeding system and population genetic structure in a subtropical and a temperate violet species. Ph.D. diss., Ohio Univ., Athens, Ohio.Google Scholar
  33. Crozier, T. S. &J. F. Thomas. 1993. Normal floral ontogeny and cool temperature-induced aberrant floral development inGlycine max (Fabaceae). Amer. J. Bot. 80(4): 429–448.CrossRefGoogle Scholar
  34. Cruden, R. W. 1977. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31(1): 32–46.CrossRefGoogle Scholar
  35. Culley, T. M. 2000. Inbreeding depression and floral type differences inViola canadensis (Violaceae), a perennial herb with chasmogamous and cleistogamous flowers. Canad. J. Bot. 78(11): 1420–1429.CrossRefGoogle Scholar
  36. — 2002. Reproductive biology and delayed selfing inViola pubescens (Violaceae), an understory herb with chasmogamous and cleistogamous flowers. Int. J. Pl. Sci. 163: 113–122.CrossRefGoogle Scholar
  37. Culver, D. C. &A. J. Beattie. 1978. Myrmecochory inViola: dynamics of seed-ant interactions in some West Virginia species. J. Ecol. 66: 53–72.CrossRefGoogle Scholar
  38. Darwin, C. 1877. The different forms of flowers on plants of the same species. John Murray, London. Reprint, 1986. University of Chicago Press, Chicago, Illinois.Google Scholar
  39. Delgado-Salinas, A. 2000. New species of MexicanPhaseolus (Fabaceae). Syst. Bot. 25(3): 414–436.CrossRefGoogle Scholar
  40. De-yuan, H. 1990. A biosystematic study onRanunculus subgenusBatrachium in S. Sweden. Nordic J. Bot. 11:41–59.CrossRefGoogle Scholar
  41. Diaz, A., &M. R. Macnair. 1999. Pollen tube competition as a mechanism of prezygotic reproductive isolation betweenMimulus nasutus and its presumed progenitorM. buttatus. New Phytol. 144: 471–478.CrossRefGoogle Scholar
  42. Dinc, M. &S. Yildirimli. 2002. A new species ofViola (Violaceae) from Turkey. Bot. J. Linn. Soc. 138: 483–487.CrossRefGoogle Scholar
  43. —,Y. Bağci &S. Yildirimli. 2003. A new species ofViola L. (Violaceae) from South Anatolia. Bot. J. Linn. Soc. 141: 477–482.CrossRefGoogle Scholar
  44. Drewes, S. I. &P. S. Hoc. 2000. Morphology and development of cleistogamous flowers inMacroptilium fraternum (Fabaceae). Kurtziana 28(2): 229–238.Google Scholar
  45. Eckstein, R. L. &A. Otte. 2005. Effects of cleistogamy and pollen source on seed production and offspring performance in three endangered violets. Basic Appl. Ecol. 6: 339–350.CrossRefGoogle Scholar
  46. Edgar, E. &H. E. Connor. 1982.Dichelachne (Gramineae) in New Zealand. New Zealand J. Bot. 20: 303–309.Google Scholar
  47. Ehrenfeld, J. G. 1999. A rhizomatous, perennial form ofMicrostegium vimineum (Trin.) A. Camus in New Jersey. J. Torrey Bot. Soc. 126(4): 352–358.CrossRefGoogle Scholar
  48. Elisafenko, T. V. 1998. The two types of flowering in the rare Siberian species ofViola (Violaceae). Bot. Zhurn. (St. Petersburg) 83(6): 66–72.Google Scholar
  49. Endress, P. K. 1999. Symmetry in flowers: diversity and evolution. Int. J. Pl. Sci. 160 (6 Suppl.): S3-S23.CrossRefGoogle Scholar
  50. Evans, L. T. 1956. Chasmogamous flowering inViola palustris L. Nature 178: 1301.CrossRefGoogle Scholar
  51. Freitas, B. M., J. E. Alves, G. F. Brandão &Z. B. Araujo. 1995. Pollination requirements of West Indian cherry (Malpighia emarginata) and its putative pollinators,Centris bees, in NE Brazil. J. Agric. Sci. 133: 303–311.CrossRefGoogle Scholar
  52. Freudenstein, J. V. 1994. Character transformation and relationships inCorallorhiza (Orchidaceae: Epidendroideae). II. Morphological variation and phylogenetic analysis. Amer. J. Bot. 81: 1458–1467.CrossRefGoogle Scholar
  53. — 1999. A new species of Corallorhiza (Orchidaceae) from West Virginia, U.S.A. Novon 9: 511–513.CrossRefGoogle Scholar
  54. Gallardo, R., E. Dominguez &J. M. Muñoz. 1993. The heterochronic origin of the cleistogamous flower inAstragalus cymbicarpos (Fabaceae). Amer. J. Bot. 80(7): 814–823.CrossRefGoogle Scholar
  55. Gardner, C. S. 1982. Systematic study ofTillandsia subgenusTillandsia. Ph.D. diss., Texas A&M Univ., College Station, Texas.Google Scholar
  56. Gil-Ad, N. L. 1997. Systematics ofViola subsection Boreali-Americanae. Boissiera 53: 1–130.Google Scholar
  57. Gilmartin, A. J. &G. K. Brown. 1985. Cleistogamy inTillandsia capillaries (Bromeliaceae). Biotropica 17(3): 256–259.CrossRefGoogle Scholar
  58. Gleason, H. A. &A. Cronquist. 1991. Manual of vascular plants of northeastern United States and adjacent Canada. Ed. 2. New York Botanical Garden, New York.Google Scholar
  59. Gomez, S. M. &A. Kalamani. 2003. Butterfly pea (Clitoria teratea): a nutritive multipurpose forage legume for the tropics—an overview. Pakistan J. Nutr. 2(6): 374–379.CrossRefGoogle Scholar
  60. Gopinathan, M. C. &C. R. Babu. 1987. Breeding systems and pollination inVigna minima (Leguminosae, Papilionoideae). Pl. Syst. Evol. 156: 117–126.CrossRefGoogle Scholar
  61. Grau, J. 1981. Two new species of the genusCryptantha (Boraginaceae) and their taxonomic position. Mitt. Bot. Staatssamml. München 17: 511–526.Google Scholar
  62. Hackel, E. 1906. Über Cleristogamie bei den Grasern. Oesterr. Bot. Z. 56: 81–88.CrossRefGoogle Scholar
  63. Hardy, C. R. &R. B. Faden. 2004.Plowmanianthus, a new genus of Commelinaceae with five new species from tropical America. Syst. Bot. 29: 316–333.CrossRefGoogle Scholar
  64. Herrera, J. 1992. Flowering variation and breeding systems in the Cistaceae. Pl. Syst. Evol. 179(3-4): 245–255.CrossRefGoogle Scholar
  65. Hilu, K. W., T. Borsch, K. Müller, D. E. Soltis, P. S. Soltis, V. Savolainen, M. W. Chase, M. P. Powell, L. A. Alice, R. Evans, H. Sauquet, C. Neinhuis, T. A. B. Slotta, J. G. Rohwer, C. S. Campbell &L. W. Chatrou. 2003. Angiosperm phylogeny based onmatK sequence information. Amer. J. Bot. 90: 1758–1776.CrossRefGoogle Scholar
  66. Holderegger, R., I. Stehlik, R. I. Lewis Smith &R. J. Abbott. 2003. Populations of Antarctic hairgrass (Deschampsia antarctica) show low genetic diversity. Arctic Antarc. Alpine Res. 35(2): 214–217.CrossRefGoogle Scholar
  67. Holsinger, K. E. 1986. Dispersal and plant mating systems: the evolution of self-fertilization in subdivided populations. Evolution 40: 405–413.CrossRefGoogle Scholar
  68. Howes, M. 1999. Beechdrops. Newslett. Ohio Div. Nat. Areas Preserves 21(1): 5.Google Scholar
  69. Jacobs, S. W. L., J. Everett, H. E. Connor &E. Edgar. 1989. Stipoid grasses in New Zealand. New Zealand J. Bot. 27: 569–582.Google Scholar
  70. Jacquemart, A. L. &J. R. Desloover. 1992. The part taken by cleistogamy inNarthecium ossifragum reproductive strategy. Flora 187 (1-2): 67–72.Google Scholar
  71. Jamison, D. S. &J. I. Yoder. 2001. Heritable variation in quinine-induced haustorium development in the parasitic plantTriphysaria. Pl. Physiol. 125: 1870–1880.CrossRefGoogle Scholar
  72. Jasieniuk, M. &M. J. Lechowicz. 1987. Spatial and temporal variation in chasmogamy and cleistogamy inOxalis montana (Oxalidaceae). Amer. J. Bot. 74:1672–1680.CrossRefGoogle Scholar
  73. Jiang, M. &Y. Kadono. 2001. Growth and reproduction characteristics of an aquatic macrophyteOttelia alismoides (L.) Pers. (Hydrocharitaceae). Ecol. Res. 16(4): 687–695.CrossRefGoogle Scholar
  74. Jones, D. L. 1997. A taxonomic revision ofCheirostylis (Orchidaceae) in Australia. Muelleria 10: 75–83.Google Scholar
  75. Judziewicz, E. J. &P. M. Peterson. 1990. A new cleistogamous South American species ofEragrostis (Poaceae Chloridoideae). Brittonia 42: 47–49.CrossRefGoogle Scholar
  76. Kadono, Y. &E. L. Schneider. 1987. The life history of theEuryale ferox Salisb. in southwestern Japan with special reference to reproductive ecology. Pl. Spec. Biol. 2: 109–115.CrossRefGoogle Scholar
  77. Kaul, V., A. K. Koul &M. C. Sharma. 2000. The underground flower. Curr. Sci. 78: 39–44.Google Scholar
  78. Keighery, G. J. 1984. Cleistogamy inElatine gratioloides A. Cunn. (Elatinaceae). W. Austral. Naturalist 16(1): 22.Google Scholar
  79. — 1988. Breeding systems of the Western Australian flora. W. Austral. Naturalist 17(5): 121–125.Google Scholar
  80. Kerner von Marilaun, A. 1902. The natural history of plants. Vol. II. Translated by F.W. Oliver, Blackie and Son, London.Google Scholar
  81. Khosla, C., K. R. Shivanna &H. Y. Mohan Ram. 1998. Pollination in the aquatic insectivoreUtricularia inflexa var. stellaris. Phytomorphology 48(4): 417–425.Google Scholar
  82. ———. 2001. Cleistogamy inGriffithella hookeriana (Podostemaceae). S. African J. Bot. 67(2): 320–324.Google Scholar
  83. Kim, I. &G. D. Carr. 1990. Reproductive biology and uniform culture ofPortulaca in Hawaii. Pacific Sci. 44: 123–129.Google Scholar
  84. Kim, K. S., B. Y. Sun, S. S. Whang &G. H. Chung. 1991. Biosystematic study on the genusViola in Korea: comparative morphology of theViola albida complex. Korean J. Bot. 34(3): 229–238.Google Scholar
  85. Knight, S. E. &D. M. Waller. 1987. Genetic consequences of outcrossing in the cleistogamous annualImpatiens capensis. I Population genetic structure. Evolution 41: 969–978.CrossRefGoogle Scholar
  86. Koller, D. &N. Roth. 1964. Studies on the ecological and physiological significance of amphicarpy inGymnarrhena micrantha (Compositae). Amer. J. Bot. 51: 26–35.CrossRefGoogle Scholar
  87. Kuhn, M. 1867. Einige Bemerkungen überVandellia und den Blüten Dimorphismus. Bot. Zeitung 25: 65–67.Google Scholar
  88. Lazarides, M., J. B. Hacker &M. H. Andrew. 1991. Taxonomy, cytology and ecology of indigenous Australian sorgums (Sorghum Moench: Andropogoneae: Poaceae). Austral. Syst. Bot. 4(4): 591–635.CrossRefGoogle Scholar
  89. Le Corff, J. 1993. Effects of light and nutrient availability on chasmogamy and cleistogamy in an understory tropical herb,Calathea micans (Marantaceae). Amer. J. Bot. 80:1392–1399.CrossRefGoogle Scholar
  90. Lesica, P., R. F. Leary, F. W. Allendorf &D. E. Bilderback. 1988. Lack of genie diversity within and among populations of an endangered plant,Howellia aquatilis. Conservation Biol. 2: 275–282.CrossRefGoogle Scholar
  91. Levin, R. A. 2000. Phylogenetic relationships within Nyctaginaceae tribe Nyctagineae: evidence from nuclear and chloroplast genomes. Syst. Bot. 25: 738–750.CrossRefGoogle Scholar
  92. — 2002. Taxonomic status ofAcleisanthes, Selinocarpus, andAmmocodon (Nyctaginaceae). Novon 12: 58–63.CrossRefGoogle Scholar
  93. Lloyd, D. G. 1984. Variation strategies of plants in heterogeneous environments. Biol. J. Linn. Soc. 21: 357–385.CrossRefGoogle Scholar
  94. — andD. J. Schoen. 1992. Self- and cross-fertilization in plants. I. Functional dimensions. Int. J. Pl. Sci. 153: 358–369.CrossRefGoogle Scholar
  95. Lord, E. M. 1981. Cleistogamy: a tool for the study of floral morphogenesis, function and evolution. Bot. Rev. 47:421–449.CrossRefGoogle Scholar
  96. — &L. U. Kohorn. 1986. Gynoecial development, pollination, and the path of pollen tube growth in the Tepary bean,Phaseolus acutifolius. Amer. J. Bot. 73(1): 70–78.CrossRefGoogle Scholar
  97. Lu, Y. 2002. Why is cleistogamy a selected reproductive strategy inImpatiens capensis (Balsaminaceae)? Biol. J. Linn. Soc. 75: 543–553.CrossRefGoogle Scholar
  98. Mayers, A. M. &E. M. Lord. 1983a. Comparative flower development in the cleistogamous speciesViola odorata. I. A growth rate study. Amer. J. Bot. 70: 1548–1555.CrossRefGoogle Scholar
  99. ——. 1983b. Comparative flower development in the cleistogamous speciesViola odorata. II. An organographic study. Amer. J. Bot. 70: 1556–1563.CrossRefGoogle Scholar
  100. Maheshwari, J. K. 1962. Cleistogamy in angiosperms. Pp. 145–155in P. Maheshwari, B. M. John & I. K. Vasil, (eds.), Proceedings of the Summer School of Botany June 2–15, 1960. Ministry of Scientific Research and Cultural Affairs, New Delhi, India.Google Scholar
  101. Marcussen, T. 2003. A new violet species (Violaceae) from the south-west Alps. Bot. J. Linn. Soc. 142: 119–123.CrossRefGoogle Scholar
  102. Márquez-Guzmán, J., S. Vázquez-Santana, E. M. Engleman, A. Martímez-Mena & E. Martínez. Pollen development and fertilization inLacandonia schismatica (Lacandoniaceae). Ann. Missouri Bot. Gard. 80: 891–897.Google Scholar
  103. Masuda, M. &T. Yahara. 1994. Reproductive ecology of a cleistogamous annual,Impatiens nolitangere L. occurring under different environmental conditions. Ecol. Res. 9: 67–75.CrossRefGoogle Scholar
  104. —— &M. Maki. 2001. An ESS model for the mixed production of cleistogamous and chasmogamous flowers in a facultative cleistogamous plant. Evol. Ecol. Res. 3: 429–439.Google Scholar
  105. McCall, C., T. Mitchell-Olds &D. M. Waller. 1989. Fitness consequences of outcrossing inImpatiens capensis: tests of the frequency-dependent and sib-competition models. Evolution 43: 1075–1084.CrossRefGoogle Scholar
  106. Mitchell-Olds, T. &D. M. Waller. 1985. Relative performance of selfed and outcrossed progeny inImpatiens capensis. Evolution 39: 533–544.CrossRefGoogle Scholar
  107. Morin, N. 1983. Systematics ofGithopsis (Campanulaceae). Syst. Bot. 8(4): 436–468.CrossRefGoogle Scholar
  108. Moyle, L. C., M. S. Olson &P. Tiffin. 2004. Patterns of reproductive isolation in three angiosperm genera. Evolution 58: 1195–1208.PubMedGoogle Scholar
  109. Munz, P. A. 1974. A flora of Southern California. Univ. of California Press, Berkeley, California.Google Scholar
  110. Nandi, O. I. 1998. Floral development and systematics of Cistaceae. Pl. Syst. Evol. 212(1-2): 107–134.CrossRefGoogle Scholar
  111. Nieuwland, J. A. 1914. Notes on cleistogamous flowers of violets. II. Amer. Midl. Naturalist 3(7): 198–200.CrossRefGoogle Scholar
  112. — 1916. Cleistogamous flowers in the Pansies. Amer. Midl. Naturalist 4(1): 464–466.CrossRefGoogle Scholar
  113. Novosyelova, L. V. 1998. The bud cleistogamy of some annual species of the genusMedicago (Fabaceae). Bot. Zhurn. (St. Petersburg) 83: 82–87.Google Scholar
  114. Oakley, C. G. 2004. Inbreeding depression and mating system evolution in the perennial herbViola septemloba; and the evolutionary maintenance of cleistogamy. M.S. thesis, Florida State Univ., Tallahassee.Google Scholar
  115. Oakley, C. G., K. S. Moriuchi & A. A. Winn. In prep. Stable mixed mating in cleistogamous species: a review of the ideas and evidence. Annual Rev. Ecol. Syst.Google Scholar
  116. Ortega-Olivencia, A., J. A. López-Paredes, T. Rodríguez-Riaño &J. A. Devesa. 1998. Modes of selfpollination and absence of cryptic self-incompatibility inDrosophyllum lusitanicum (Droseraceae). Bot. Acta 111:474–480.Google Scholar
  117. Oyama, R. K. &D. A. Baum. 2004. Phylogenetic relationships of North AmericanAntirrhinum (Veronicaceae). Amer. J. Bot. 91(6): 918–925.CrossRefGoogle Scholar
  118. Pfeifer, H. W. 1966. Revision of the North and Central American hexandrous species ofAristolochia (Aristolochiaceae). Ann. Missouri Bot. Gard. 53: 116–196.CrossRefGoogle Scholar
  119. Plitmann, U. 1995. Distribution of dimorphic flowers as related to other elements of the reproductive strategy. Pl. Spec. Biol. 10: 53–60.CrossRefGoogle Scholar
  120. Porras, R. &J. M. Muñoz Álvarez. 1999. Breeding system in the cleistogamous speciesCentaurea melitensis (Asteraceae). Canad. J. Bot. 77:1632–1640.CrossRefGoogle Scholar
  121. Primack, R. B. 1978. Evolutionary aspects of wind pollination in the genusPlantago (Plantaginaceae). New Phytol. 81(2): 449–458.CrossRefGoogle Scholar
  122. Pupulin, F. 1998. Orchid florula of Parque Nacional Manuel Antonio. Revista Biol. Trop. 46(4): 961–10317.Google Scholar
  123. Redbo-Torstensson, P. &H. Berg. 1995. Seasonal cleistogamy: a conditional strategy to provide reproductive assurance. Acta Bot. Neerl. 44: 247–256.Google Scholar
  124. Rickett, H. W. 1932. Distribution of cleistogamy among flowering plants. Typewritten notes available at the New York Botanical Garden Library.Google Scholar
  125. Ritzerow, H. 1908. Über Bau und Befruchtung kleistogamer Blüten. Bot. Zeitung (Flora) 98: 163–212.Google Scholar
  126. Ruiz de Clavijo, E. 1997. A comparative study of the reproductive biology of twoAjuga species (Lamiaceae) in the southwest of the Iberian Peninsula. Int. J. Pl. Sci. 158:282–291.CrossRefGoogle Scholar
  127. — &M. J. Jimenez. 1993. Cleistogamy and chasmogamy inCeratocapnos heterocarpa (Fumariaceae). Int. J. Pl. Sci. 154: 325–333.CrossRefGoogle Scholar
  128. Sakai, S. &A. Sakai. 1996. Why is there variation in mean seed size among plants within single populations? Test of the fertilization efficiency hypothesis. Amer. J. Bot. 83(11): 1454–1457.CrossRefGoogle Scholar
  129. Schemske, D. W. 1978. Evolution of reproductive characteristics inImpatiens (Balsaminaceae): the significance of cleistogamy and chasmogamy. Ecology 59: 596–613.CrossRefGoogle Scholar
  130. — 1984. Population structure and local selection inImpatiens pallida (Balsaminaceae), a selfing annual. Evolution 38: 817–832.CrossRefGoogle Scholar
  131. Schmitt, J. &D. W. Ehrhardt. 1987. A test of the sib-competition hypothesis for outcrossing advantage inImpatiens capensis. Evolution 41: 579–590.CrossRefGoogle Scholar
  132. ——. 1990. Enhancement of inbreeding depression by dominance and suppression inImpatiens capensis. Evolution 44: 269–278.CrossRefGoogle Scholar
  133. — &S. E. Gamble. 1990. The effect of distance from the parental site on offspring performance and inbreeding depression inImpatiens capensis: a test of the local adaptation hypothesis. Evolution 44: 202–230.Google Scholar
  134. —,D. Ehrhardt &D. Swartz. 1985. Differential dispersal of self-fertilized and outcrossed progeny in Jewelweed (Impatiens capensis). Amer. Naturalist 126: 570–575.CrossRefGoogle Scholar
  135. Schoen, D. J. &A. H. D. Brown. 1991. Whole- and part-flower self-pollination inGlycine clandestina andG. argyrea and the evolution of autogamy. Evolution 45:1651–1664.CrossRefGoogle Scholar
  136. — &D. G. Lloyd. 1984. The selection of cleistogamy and heteromorphic diaspores. Biol. J. Linn. Soc. 23: 303–322.CrossRefGoogle Scholar
  137. Sigrist, M. R. &M. Sazima. 2002.Ruellia brevifolia (Pohl) Ezcurra (Acanthaceae): flowering phenology, pollination biology and reproduction. Revista Brasil. Bot. 25: 35–42.Google Scholar
  138. Simpson, R. L., M. A. Leek &V. T. Parker. 1985. The comparative ecology ofImpatiens capensis Meerb. (Balsaminaceae) in central New Jersey. Bull. Torrey Bot. Club 112: 295–311.CrossRefGoogle Scholar
  139. Solbrig, O. T. 1981. Studies on the population biology of the genusViola. II. Effects of plant size on fitness inViola sororia. Evolution 35: 1080–1093.CrossRefGoogle Scholar
  140. Soltis, D. E., P. S. Soltis, M. W. Chase, M. E. Mort, D. C. Albach, M. Zanis, V. Savolainen, W. H. Hahn, S. B. Hoot, M. F. Fay, M. Axtell, S. M. Swensen, L. M. Prince, W. J. Kress, K. C. Nixon &J. S. Farris. 2000. Angiosperm phylogeny inferred from 18S rDNA,rbcL, andatpB sequences. Bot. J. Linn. Soc. 133: 381–461.Google Scholar
  141. ——,P. K. Endress &M.W. Chase. 2005. Phylogeny and evolution of angiosperms. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  142. Stewart, S. C. 1994. Genetic constraints on mating system evolution in the cleistogamous annualImpatiens pallida: inbreeding in chasmogamous flowers. Heredity 73:265–274.CrossRefGoogle Scholar
  143. Sun, M. 1999. Cleistogamy inScutellaria indica (Labiatae): effective mating system and population genetic structure. Molec. Ecol. 8: 1285–1295.CrossRefGoogle Scholar
  144. Takahashi, R., H. Kurosaki., S. Yumoto, O. K. Han &J. Abe. 2001. Genetic and linkage analysis of cleistogamy in Soybean. J. Heredity 92(1): 89–92.CrossRefGoogle Scholar
  145. Trapp, E. J. 1988. Dispersal of heteromorphic seeds inAmphicarpaea bracteata (Fabaceae). Amer. J. Bot. 75: 1535–1539.CrossRefGoogle Scholar
  146. — &S. D. Hendrix. 1988. Consequences of a mixed reproductive system in the hog peanut,Amphicarpaea bracteata (Fabaceae). Oecologia 75: 285–290.CrossRefGoogle Scholar
  147. Trent, J. A. 1939. Studies pertaining to the life history ofSpecularia perfoliata (L.) A. DC., with special reference to cleistogamy. Ph.D. diss., Ohio State University, Columbus.Google Scholar
  148. Uphof, J. C. Th. 1938. Cleistogamic flowers. Bot. Rev. 4: 21–49.CrossRefGoogle Scholar
  149. Vander Kloet, S. P. 1993. Biosystematic studies ofVaccinium sectionMacropelma (Ericaceae) in Hawaii. Pacific Sci. 47(1): 76–85.Google Scholar
  150. Van Wyk, B.-E. 1990. Studies in the genusLotononis (Crotalaria, Fabaceae). 13. Two new species and notes on the occurrence of cleistogamy in the section Leptis. Bothalia 20(1): 17–22.Google Scholar
  151. Wagner, W. L., D. R. Herbst &S. H. Sohmer. 1990. Manual of the flowering plants of Hawai’i. University of Hawaii Press, Honolulu.Google Scholar
  152. —,S. G. Weiler &A. Sakai. 2005. Monograph ofSchiedea (Caryophyllaceae-Alsinoideae). Syst. Bot. Monogr. 72: 1–169.Google Scholar
  153. Waller, D. M. 1979. The relative costs of self- and cross-fertilized seeds inImpatiens capensis (Balsaminaceae). Amer. J. Bot. 66: 313–320.CrossRefGoogle Scholar
  154. — 1984. Differences in fitness between seedlings derived from cleistogamous and chasmogamous flowers inImpatiens capensis. Evolution 38: 427–440.CrossRefGoogle Scholar
  155. Watanabe, K., T. Yahara &H. Kadota. 1992. Natural hybrid populations between chasmogamous and cleistogamous species,Ainsliaea fauieana andAinsliaea apiculata (Asteraceae; Mutisiae): morphology, cytology, reproductive mode and allozyme variation. Pl. Spec. Biol. 7(1): 49–59.CrossRefGoogle Scholar
  156. Wilken, D. H. 1982. The balance between chasmogamy and cleistogamy inCollomia grandiflora (Polemoniaceae). Amer. J. Bot. 69: 1326–1333.CrossRefGoogle Scholar
  157. Wylie, R. B. 1917. Cleistogamy inHeteranthera dubia. Stud. Nat. Hist. Iowa Univ. 7: 48–58.Google Scholar
  158. Yamamoto, I. &Y. Kadono. 1990. A study of the reproductive biology of aquaticUtricularia species in Southwestern Japan. Acta Phytotax. Geobot. 41(4-6): 189–200.Google Scholar

Copyright information

© The New York Botanical Garden 2007

Authors and Affiliations

  • Theresa M. Culley
    • 1
  • Matthew R. Klooster
    • 1
  1. 1.Department of Biological SciencesUniversity of CincinnatiCincinnatiUSA

Personalised recommendations