Advertisement

The Botanical Review

, Volume 69, Issue 4, pp 377–440 | Cite as

Systematics and biology of silica bodies in monocotyledons

  • Christina J. Prychid
  • Paula J. Rudall
  • Mary Gregory

Abstract

Many plants take up soluble monosilicic acid from the soil. Some of these plants subsequently deposit it as cell inclusions of characteristic structure. This article describes the distribution and diversity of opaline silica bodies in monocotyledons in a phylogenetic framework, together with a review of techniques used for their examination, and the ecology, function and economic applications of these cell inclusions. There are several different morphological forms of silica in monocot tissues, and the number of silica bodies per cell may also vary. The most common type is the “druse-like” spherical body, of which there is normally a single body per cell, more in some cases. Other forms include the conical type and an amorphous, fragmentary type (silica sand). Silica bodies are most commonly found either in the epidermis (e.g., in grasses, commelinas and sedges) or in the sheath cells of vascular bundles (e.g., in palms, bananas and orchids). Silica-bearing cells are most commonly associated either with subepidermal sclerenchyma or bundle-sheath sclerenchyma. Silica bodies are found only in orchids and commelinids, not in other lilioid or basal monocots. In orchids, silica bodies are entirely absent from subfamilies Vanilloideae and Orchidoideae and most Epidendroideae but present in some Cypripedioideae and in the putatively basal orchid subfamily Apostasioideae. Among commelinid monocots, silica bodies are present in all palms, Dasypogonaceae and Zingiberales but present or absent in different taxa of Poales and Commelinales, with at least four separate losses of silica bodies in Poales.

Keywords

Botanical Review Silica Sand Calcium Oxalate Crystal Silica Body Soluble Silica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Acuna-Mesen, R. &E. Garcia-Diaz. 1998. NewCuvieronius hyodon (Proboscidea: Gomphotheriidae) from the Pleistocene of Costa Rica. Revista Biol. Trop. 46: 1167–1172.Google Scholar
  2. Agarie, S., W. Agata, H. Uchida, F. Kubota &P. Kaufman. 1996. Function of silica bodies in the epidermal system of rice (Oryza sativa L.): Testing the window hypothesis. J. Exp. Bot. 47: 655–660.PubMedCrossRefGoogle Scholar
  3. Allingham, M. M., J. M. Cullen, C. H. Giles, S. K. Jain &J. S. Woods. 1958. Adsorption at inorganic surfaces, II. Adsorption of dyes and related compounds by silica. J. Appl. Chem. 8: 108–116.Google Scholar
  4. Amick, J. 1982. Purification of rice hulls as a source of solar grade silicon for solar cells. J. Electrochem. Soc. 129: 864–866.CrossRefGoogle Scholar
  5. Ancibor, E. 1995. Palmeras fósiles del Cretácico Tardío de la Patagonia Argentina (Bajo de Santa Rosa, Río Negro). Ameghiniana 32: 287–299 (Spanish; English summary).Google Scholar
  6. APG (Angiosperm Phylogeny Group). 1998. An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard. 85: 531–553.CrossRefGoogle Scholar
  7. APG II (Angiosperm Phytogeny Group II). 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399–436.CrossRefGoogle Scholar
  8. Armitage, P. L. 1975. The extraction and identification of opal phytoliths from the teeth of ungulates. J. Archaeol. Sci. 2: 187–197.CrossRefGoogle Scholar
  9. Ashton, M. J. &M. M. Jones. 1976. A study of the transpiration surfaces ofAvena sterilis L. var. Algerian leaves using monosilicic acid as a tracer for water movement. Planta 130: 121–129.CrossRefGoogle Scholar
  10. Baker, G. 1961. Opal phytoliths and adventitious mineral particles in wheat dust. Mineral Investigations Technical Paper No. 4. CSIRO, Melbourne, Australia.Google Scholar
  11. —,L. H. P. Jones &I. D. Wardrop. 1959. Cause of wear in sheep’s teeth. Nature 184: 1583–1584.PubMedCrossRefGoogle Scholar
  12. —,——. 1961. Opal phytoliths and mineral particles in the rumen of the sheep. Austral. J. Agric. Res. 12:462–473.CrossRefGoogle Scholar
  13. Balasta, M. L. F. C., C. M. Perez, B. O. Juliano, C. P. Villareal, J. N. A. Lott &D. B. Roxas. 1989. Effects of silica level on some properties ofOryza saliva straw and hull. Canad. J. Bot. 67:2356–2363.Google Scholar
  14. Ball, T. B., J. D. Brotherson &J. S. Gardner. 1993. A typologic and morphometric study of variation in phytoliths from einkorn wheat (Triticum monococcum). Canad. J. Bot. 71: 1182–1192.Google Scholar
  15. Barthlott, W. &D. Frölich. 1983. Mikromorphologie und Orientierungsmuster epicuticularer Wachs-Kristalloide: Ein neues systematisches Merkmal bei Monokotylen. Pl. Syst. Evol. 142: 171–185.CrossRefGoogle Scholar
  16. Baumert, K. 1907. Experimentelle Untersuchungen über Lichtschutzeinrichtungen an grünen Blättern. Beitr. Biol. Pfl. 9: 83–162 (also diss., Erlangen, 1907).Google Scholar
  17. Bennett, D. M. &D. W. Parry. 1981. Electron-probe microanalysis studies of silicon in the epicarp hairs of the caryopses ofHordeum sativum Jess.,Avena saliva L.,Secale cereale L. andTriticum aestivum L. Ann. Bot. 48: 645–654.Google Scholar
  18. Bertoldi de Pomar, H. 1971. Ensayo de clasificación morfológica de los silicofitolitos. Ameghiniana 8: 317–328 (English summary).Google Scholar
  19. Bezeau, L. M., A. Johnston &S. Smoliak. 1966. Silica and protein content of mixed prairie and fescue grassland vegetation and its relationship to the incidence of silica urolithiasis. Canad. J. Pl. Sci. 46: 625–631.Google Scholar
  20. Bienfait, A., L. Waterkeyn &L. Ermin. 1985. Importance des verrues foliaires silicifiées dans la systématique desSelaginella: Observations en microscopie électronique à balayage (MEB). Bull. Jard. Bot. Belg. 55: 73–81.CrossRefGoogle Scholar
  21. Birchall, J. D. 1990. The role of silicon in biology. Chemistry in Britain 26: 141–144.Google Scholar
  22. Blackman, E. 1968. The pattern and sequence of opaline silica deposition in rye (Secale cereale L.). Ann. Bot., n.s., 32: 207–218.Google Scholar
  23. —. 1969. Observations on the development of the silica cells of the leaf sheath of wheat (Triticum aestivum). Canad. J. Bot. 47: 827–838.CrossRefGoogle Scholar
  24. —. 1971. Opaline silica bodies in the range grasses of southern Alberta. Canad. J. Bot. 49: 769–781.CrossRefGoogle Scholar
  25. Blinnikov, M. S. 1994. Phytolith analysis and holocene dynamics of alpine vegetation. Veröff. Geobot. Inst. Rübel 115: 23–40 (English).Google Scholar
  26. —,A. Busacca &C. Whitlock. 2002. Reconstruction of the late Pleistocene grassland of the Columbia basin, Washington, USA, based on phytolith records in loess. Palaeogeog. Palaeoclim. Palaeoecol. 177: 77–101.CrossRefGoogle Scholar
  27. Bode, E., S. Kozik, U. Kunz &H. Lehmann. 1994. Comparative electron-microscopic studies on the process of silicification in leaves of 2 different grass species. Wochenschrift 101: 367–372.Google Scholar
  28. Bozarth, S. R. 1993. Maize (Zea mays) cob phytoliths from a Central Kansas Great Bend aspect archaeological site. Plains Anthropologist 38: 279–286.Google Scholar
  29. Brady, N. C. 1990. The nature and properties of soils. Ed. 10. Macmillan, New York.Google Scholar
  30. Brandenburg, D. M., S. D. Russell, J. R. Estes &W. F. Chissoe. 1985. Backscattered electron imaging as a technique for visualizing silica bodies in grasses. Scan. Electron Microscop. 1985(4): 1509–1517.Google Scholar
  31. Briggs, B. G. &L. A. S. Johnson. 2000. Hopkinsiaceae and Lyginiaceae, two new families of Poales in Western Australia, with revision ofHopkinsia andLyginia. Telopea 8: 477–502.Google Scholar
  32. —,A. D. Marchant, S. Gilmore &C. L. Porter. 2000. A molecular phylogeny of Restionaceae and allies. Pp. 661–671in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.Google Scholar
  33. Brown, D. A. 1984. Prospects and limits of a phytolith key for grasses in the central United States. J. Archaeol. Sci. 11: 345–368.CrossRefGoogle Scholar
  34. Browning, J. &K. D. Gordon Gray. 1995. Studies in Cyperaceae in southern Africa, 26: Glume epidermal silica deposits as a character in generic delimitation ofCostularia andCyathocoma as distinct fromTetraria and other allies. S. Afr. J. Bot. 61: 66–71.Google Scholar
  35. —,—,S. Galen Smith &J. van Staden. 1998.Bolboschoenus glaucus (Cyperaceae), with emphasis upon Africa. Nordic J. Bot. 18: 475–482.CrossRefGoogle Scholar
  36. Bruhl, J. J. 1995. Sedge genera of the world: Relationships and a new classification of the Cyperaceae. Austral. Syst. Bot. 8: 125–305.CrossRefGoogle Scholar
  37. Bulitsch, A. 1892 [1894]. Zur Anatomie der Bromeliaceae, II. Ausscheidung von Kieselerde in den Blattepidermiszellen einiger Bromeliaceen. [In Russian] Uebers. Leist. Bot. Russland 1892, St. Petersburg 37–38; 1894. [See Just’s Jber. 21 (1): 539–540, No. 31, 1893]Google Scholar
  38. Bush, M. B., D. R. Piperno &P. A. Colinvaux. 1989. A 6,000 year history of Amazonian maize cultivation. Nature 340: 303–305.CrossRefGoogle Scholar
  39. Cailin, W., H. Fujiwara, T. Udatsu &T. Linghua. 1994. Morphological features of silica bodies from motor cells in local and modern cultivated rice (Oryza saliva L.) from China. Ethnobotany 6: 77–86.Google Scholar
  40. Cameron, K. M. &M. W. Chase. 2000. Nuclear 18s rDNA sequences of Orchidaceae confirm the subfamilial status and circumscription of Vanilloideae. Pp. 457–464in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.Google Scholar
  41. —,—,W. M. Whitten, P. J. Kores, D. C. Jarell, V. A. Albert, T. Yukawa, H. G. Hüls &D. H. Goldman. 1999. A phylogenetic analysis of the Orchidaceae: Evidence from rbcL nucleotide sequences. Amer. J. Bot. 86: 208–224.CrossRefGoogle Scholar
  42. Carlquist, S. 1966. Anatomy of Rapateaceae—Roots and stems. Phytomorphology 16: 17–38.Google Scholar
  43. Carlsward, B. S., W. L. Stern, W. S. Judd &T. W. Lucansky. 1997. Comparative leaf anatomy and systematics inDendrobium, sections Aporum and Rhizobium (Orchidaceae). Int. J. PI. Sci. 158: 332–342.CrossRefGoogle Scholar
  44. Chandrasekhar, S., P. M. Pramada, P. Raghavan, K. G. Satyanarayana &T. N. Gupta. 2002. Microsilica from rice husk as a possible substitute for condensed silica fume for high performance concrete. J. Mater. Sci. Lett. 21: 1245–1247.CrossRefGoogle Scholar
  45. Chapuis, J. L. 1980. Méthodes d’étude du regime alimentaire du lapin de Garenne,Oryctolagus cuniculus (L.) par l’analyse micrographique des feces. Terre et Vie 34: 159–198.Google Scholar
  46. Chase, M. W., M. R. Duvall, H. G. Hills, J. G. Conran, A. V. Cox, L. E. Eguiarte, J. Hartwell, M. F. Fay, L. R. Caddick, K. M. Cameron &S. Hoot. 1995a. Molecular phylogenetics of Lilianae. Pp. 109–137in P. J. Rudall, P. J. Cribb, D. F. Cutler & C. J. Humphries (eds.), Monocotyledons: Systematics and evolution. Royal Botanic Gardens, Kew.Google Scholar
  47. —,D. W. Stevenson, P. Wilkin &P. J. Rudall. 1995b. Monocot systematics: A combined analysis. Pp. 685–730in P. J. Rudall, P. J. Cribb, D. F. Cutler & C. J. Humphries (eds.), Monocotyledons: Systematics and evolution. Royal Botanic Gardens, Kew.Google Scholar
  48. —,D. S. Soltis, P. S. Soltis, P. J. Rudall, M. F. Fay, W. H. Hahn, S. Sullivan, J. Joseph, T. Givnish, K. J. Sytsma &C. Pires. 2000. Higher-level systematics of the monocotyledons: An assessment of current knowledge and a new classification. Pp. 3–16in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.Google Scholar
  49. Chen, C. &J. C. Lewin. 1969. Silicon as a nutrient element forEquisetum arvense. Canad. J. Bot. 47: 125–131.Google Scholar
  50. Chermezon, H. 1933. Observations sur le genreMicrodracoides. Bull. Soc. Bot. Fr. 80: 90–97.Google Scholar
  51. Cherouvrier, A., A. Gueguen &J.-C. Lefeuvre. 1975. Essai de détermination du regime alimentaire d’animaux herbivores à l’aide des phytolithes siliceux des Graminées et des Cyperacées: Description, apres étude en microscopie électronique à balayage, des principaux types de phytolithes rencontrés. Compt. Rend. Hebd. Acad. Sci., Paris 281: 839–842.Google Scholar
  52. Chevalier, L., C. Desbuquois, J. Le Lannic &M. Charrier. 2001. Poaceae in the natural diet of the snailHelix aspersa Muller (Gastropoda, Pulmonata). Compt. Rend. Hebd. Acad. Sci., ser. III, Sci. Vie, 324: 979–987.Google Scholar
  53. Clarke, C. B. 1908. New genera and species of Cyperaceae. Kew Bull., addit. ser., 8: 1–196.Google Scholar
  54. Côté, W. A. 1974. Rice husk characterization using SEM and EDXA. J. Indian Acad. Wood Sci. 5: 3–17.Google Scholar
  55. Crins, W. J. &P. W. Ball. 1988. Sectional limits and phylogenetic considerations inCarex Section Ceratocystis (Cyperaceae). Brittonia 40: 38–47.CrossRefGoogle Scholar
  56. Crüger, H. 1857. Westindische Fragmente, 9. El Cauto. Bot. Zeitung 15: 281–292, 297–308.Google Scholar
  57. Cummings, L. S. &A. Magennis. 1997. A phytolith and starch record of food and grit in Mayan human tooth tartar. Pp. 211–218in A. Pinilla, J. Juan-Tresserras & M. J. Machado (eds.), Estado actual de los estudios de fitolitos en suelos y plantas. Monografras del Centro de Ciencias Medioambientales, 4. Consejo Superior de Investigaciones Cientifícas and Centro de Ciencias Medioambientales, Madrid.Google Scholar
  58. Cutler, D. F. 1965. Vegetative anatomy of Thurniaceae. Kew Bull. 19: 431–441.CrossRefGoogle Scholar
  59. —. 1969. Anatomy of the monocotyledons, IV. Juncales. Clarendon Press, Oxford.Google Scholar
  60. Dahlgren, R. M. T., H. T. Clifford &P. F. Yeo. 1985. The families of the monocotyledons: Structure, evolution, and taxonomy. Springer-Verlag, Berlin.Google Scholar
  61. Davies, K. L. 1999. A preliminary survey of foliar anatomy inMaxillaria. Lindleyana 14: 126–135.Google Scholar
  62. Davis, K. M. C., J. A. Deuchar &D. A. Ibbitson. 1973. Adsorption of phenols from non-polar solvents onto silica gel. J. Chem. Soc. Faraday Trans., I, 69: 1117–1126.CrossRefGoogle Scholar
  63. Davy, H. 1814. Elements of agricultural chemistry: In a course of lectures for the Board of Agriculture. Ed. 2. J. G. Barnard, London.Google Scholar
  64. Dayanandan, P. 1983. Localization of silica and calcium carbonate in plants. Scan. Electron Microscop. 1983(3): 1519–1524.Google Scholar
  65. Deflandre, G. 1963. Les phytolithaires (Ehrenberg): Nature et signification micropaléontologique, pédologique et géologique. Protoplasma 57: 234–259.CrossRefGoogle Scholar
  66. Deng, D. 1998. The studies on phytolith system of Cyperaceae. Guihaia 18: 204–208 + 3 plates (Chinese; English summary).Google Scholar
  67. —. 2002. Studies on phytolith system ofKobresia (Cyperaceae). Guihaia 22: 394–398 + 3 plates (Chinese; English summary).Google Scholar
  68. Denton, M. F. 1983. Anatomical studies of the Luzulae group ofCyperus (Cyperaceae). Syst. Bot. 8: 250–262.CrossRefGoogle Scholar
  69. Dixon, H. H. 1894. On the vegetative organs ofVanda leres. Proc. Roy. Irish Acad., ser. 3, 3: 441–458.Google Scholar
  70. Djamin, A. &M. Pathak. 1967. Role of silica in resistance to the Asiatic rice borer,Chilo suppressalis (Walker), in rice varieties. J. Econ. Entomol. 60: 347–351.Google Scholar
  71. Doolittle, W. E. &C. D. Frederick. 1991. Phytoliths as indicators of prehistoric maize (Zea mays subsp.mays, Poaceae) cultivation. Pl. Syst. Evol. 177: 175–184.CrossRefGoogle Scholar
  72. Dormaar, J. F. &L. E. Lutwick. 1969. Infrared spectra of humic acids and opal phytoliths as indicators of palaeosols. Canad. J. Soil Sci. 49: 29–37.Google Scholar
  73. Dorweiler, J. E. &J. Doebley. 1997. Developmental analysis of teosinte glume architecture. 1: A key locus in the evolution of maize (Poaceae). Amer. J. Bot. 84: 1313–1322.CrossRefGoogle Scholar
  74. Dressler, R. L. 1993. Phylogeny and classification of the orchid family. Dioscorides Press, Portland, OR.Google Scholar
  75. — &S. L. Cook. 1988. Conical silica bodies inEria javanica. Lindleyana 3: 224–225.Google Scholar
  76. Drum, R. W. 1968. Electron microscopy of opaline phytoliths inPhragmites and other Gramineae. Amer. J. Bot. 55: 713 (abstract).Google Scholar
  77. Dunne, T. 1978. Rates of chemical denudation of silicate rocks in tropical catchments. Nature 274: 244–246.CrossRefGoogle Scholar
  78. Duval-Jouve, J. 1873a. Sur une forme de cellules épidermiques qui paraissent propres aux Cyperacées. Bull. Soc. Bot. Fr. 20: 91–95.Google Scholar
  79. —. 1873b. Dieselbe Arbeit mit einem Nachsatze. Mem. Acad. Sci. Lett. Montpellier 8: 227.Google Scholar
  80. Eberwein, R. 1903. Zur Anatomie des Blattes vonBorassus flabelliformis. Sitzungsber. Akad. Wiss. Wien 112:67–76.Google Scholar
  81. Ehrenberg, C. G. 1841. Nachtrag zu dem Vortrage über Verbreitung und Einfluss des mikroskopischen Lebens in Süd- und Nordamerika. Monatsber. Preuss. Akad. Wiss. Berlin, 139–144.Google Scholar
  82. Ernst, W. H. O., R. D. Vis &F. Piccoli. 1995. Silicon in developing nuts of the sedgeSchoenus nigricans. J. Pl. Physiol. 146: 481–488.Google Scholar
  83. Espinoza de Pernia, N. 1987. Cristales y silice en maderas dicotiledóneas de Latinoamérica. Pittieria 15: 13–65.Google Scholar
  84. Evans, T. M., R. B. Faden, M. G. Simpson &K. J. Sytsma. 2000. Phylogenetic relationships in the Commeünaceae, I: A cladistic analysis of morphological data. Syst. Bot. 25: 668–691.CrossRefGoogle Scholar
  85. Exley, C. &J. D. Birchall. 1992. Hydroxyaluminosilicate formation in solutions of low total aluminium concentration. Polyhedron 11: 1901–1907.CrossRefGoogle Scholar
  86. ——. 1993. A mechanism of hydroxyaluminosilicate formation. Polyhedron 12: 1007–1017.CrossRefGoogle Scholar
  87. Faden, R. B. &K. E. Inman. 1996. Leaf anatomy of the African genera of Commelinaceae:Anthericopsis andMurdannia. Pp. 464–471in L. J. G. van der Maesen, X. M. van der Bürgt & J. M. van Medenbach de Rooy (eds.), The biodiversity of African plants: Proceedings, XIVth AETFAT Congress, 22–27 August 1994, Wageningen, The Netherlands. Kluwer Academic, Dordrecht, Germany.Google Scholar
  88. Fahn, A. 1954. The anatomical structure of the Xanthorrhoeaceae Dumort. J. Linn. Soc., Bot. 55: 158–184.CrossRefGoogle Scholar
  89. Fay, M. F., P. J. Rudall, S. Sullivan, K. L. D. Stobart, A. Y. Bruijn, G. Reeves, F. Qamaruz Zaman, W.-P. Hong, J. Joseph, W. J. Hahn, J. G. Conran &M. W. Chase. 2000. Phylogenetic studies of Asparagales based on four plastid DNA regions. Pp. 360–371in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.Google Scholar
  90. Franklin, E. F. 1979. A note on the hairy achenes of four African species ofScleria Bergius (Cyperaceae). Bot. J. Linn. Soc. 79:333–341.CrossRefGoogle Scholar
  91. —. 1981. SEM examination of silica (Si02) deposits isolated from achenes ofScleria (Cyperaceae). Proc. Electron Microsc. Soc. S. Afr. 11: 147–148.Google Scholar
  92. Fredlund, G. G. &L. T. Tieszen. 1994. Modem phytolith assemblages from the North American Great Plains. J. Biogeog. 21: 321–335.CrossRefGoogle Scholar
  93. Freudenstein, J. V. &F. N. Rasmussen. 1999. What does morphology tell us about orchid relationships? A cladistic analysis. Amer. J. Bot. 86: 225–248.CrossRefGoogle Scholar
  94. —,D. M. Senyo &M. W. Chase. 2000. Mitochondrial DNA and relationships in the Orchidaceae. Pp. 421–429in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.Google Scholar
  95. Frohnmeyer, M. 1914. Die Entstehung und Ausbildung der Kieselzellen bei den Gramineen. Biblioth. Bot. 21, Heft 86: 1–41.Google Scholar
  96. Frölich, D. &W. Barthlott. 1988. Mikromorphologie der epicuticularen Wachse und das System der Monokotylen. Trop. Subtrop. Pflwelt 63: 1–135 (English summary).Google Scholar
  97. Fujiwara, H. &A. Sasaki. 1978. Fundamental studies in plant opal analysis (2): The shape of the silica bodies ofOryza. Archaeol. Nat. Sci. 11: 9–20.Google Scholar
  98. —,Y. I. Sato, H. Kaidama &T. Udatsu. 1990. Studies on the historical change of rice strains by the morphological analysis of plant opal. J. Archaeol. Soc. Nippon 75: 93–102.Google Scholar
  99. Gali Muhtasib. H. U., C. C. Smith &J. J. Higgins. 1992. The effect of silica in grasses on the feeding behavior of the prairie vole,Microtus ochrogaster. Ecology 73: 1724–1729.CrossRefGoogle Scholar
  100. Gartner, S., C. Chariot &N. Paris-Pireyre. 1984. Microanalyse de la silice et résistance à la verse mécanique de blé tendre. Physiol. Vég. 22: 811–820.Google Scholar
  101. Gattuso, M. A., S. J. Gattuso &A. M. Ferri. 1998 [1999]. Anatomical study on the origin and development of the crown and silica deposition in Johnsongrass (Sorghum halepense (L.) Pers.). Phytomorphology 48: 357–370.Google Scholar
  102. Ghose, M. &B. M. Johri. 1987. Cell inclusions in vegetative structure of young palms. Proc. Indian Natl. Sci. Acad., B, 53: 193–196.Google Scholar
  103. Ginieis, C. 1964. Les stegmates: Leur origine, leur développement, leur répartition. Bull. Soc. Linn. Lyon 33: 282–294, 304–307.Google Scholar
  104. Givnish, T., T. M. Evans, J. C. Pires &K. J. Sytsma. 1999. Polyphyly and covergent morphological evolution in Commelinales and Commelinidae: Evidence from rbcL sequence data. Molec. Phylog. Evol. 12: 360–385.CrossRefGoogle Scholar
  105. Gobetz, K. E. &S. R. Bozarth. 2001. Implications for late Pleistocene mastodon diet from opal phytoliths in tooth calculus. Quaternary Res. 55: 115–122.CrossRefGoogle Scholar
  106. Goetghebeur, P. 1986. Genera Cyperacearum: Een bijdrage tot de kennis van de morfologie, systematiek en fylogenese van de Cyperaceae-genera. Thesis, Rijksuniversiteit Gent.Google Scholar
  107. —. 1998. Cyperaceae. Pp. 141–190in K. Kubitzki (ed.), The families and genera of vascular plants, IV. Flowering plants: Monocotyledons: Alismatanae and Commelinanae (except Gramineae). Springer-Verlag, Berlin.Google Scholar
  108. — &J. Coudijzer. 1984. Studies in Cyperaceae, 3:Fimbristylis andAbildgaardia in Central Africa. Bull. Jard. Bot. Belg. 54: 65–89.CrossRefGoogle Scholar
  109. ——. 1985. Studies in Cyperaceae, 5: The genusBulbostylis in Central Africa. Bull. Jard. Bot. Belg. 55: 207–259.CrossRefGoogle Scholar
  110. — &A. Van den Borre. 1989. Studies in Cyperaceae, 8: A revision ofLipocarpha, includingHemicarpha andRikliella. Wageningen Agric. Univ. Pap. 89(1): 1–87.Google Scholar
  111. Goldblatt, P., J. E. Henrich &P. Rudall. 1984. Occurrence of crystals in Iridaceae and allied families and their phylogenetic significance. Ann. Missouri Bot. Gard. 71: 1013–1020.CrossRefGoogle Scholar
  112. Govindarajalu, E. 1966. The systematic anatomy of South Indian Cyperaceae:Bulbostylis Kunth. J. Linn. Soc, Bot. 59: 289–304.CrossRefGoogle Scholar
  113. —. 1969a. The systematic anatomy of South Indian Cyperaceae.Fuirena Rottb. Bot. J. Linn. Soc. 62: 27–40.CrossRefGoogle Scholar
  114. —. 1969b. Observations on new kinds of silica deposits inRhynchospora spp. Proc. Indian Acad. Sci., B, 70: 28–36.Google Scholar
  115. —. 1975. The systematic anatomy of South Indian Cyperaceae:Eleocharis R.Br.,Rhynchospora Vahl andScleria Bergius. Adansonia, ser. 2, 14: 581–632.Google Scholar
  116. GPWG (Grass Phytogeny Working Group). 2001. Phylogeny and subfamilial classification of the grasses (Poaceae). Ann. Missouri Bot. Gard. 88: 373–457.CrossRefGoogle Scholar
  117. Graven, P., C. G. de Koster, J. J. Boon &F. Bouman. 1996. Structure and macromolecular composition of the seed coat of the Musaceae. Ann. Bot. 77: 105–122.CrossRefGoogle Scholar
  118. Grob, A. 1896. Beiträge zur Anatomie der Epidermis der Gramineenblätter. Biblioth. Bot. 7(36): 1–64.Google Scholar
  119. Gueguen, A., A. Cherouvrier &J. C. Lefeuvre. 1975. Essai de détermination du régime alimentaire d’animaux herbivores à l’aide des phytolithes siliceux des Graminées et des Cyperacées, II: Application à l’étude du régime alimentaire des Orthoptères. Compt. Rend. Hebd. Acad. Sci., Paris 281: 929–932.Google Scholar
  120. Gugel, I. L., G. Grupe &K. H. Kunzelmann. 2001. Simulation of dental microwear: Characteristic traces by opal phytoliths give clues to ancient human dietary behavior. Amer. J. Phys. Anthropol. 114: 124–138.CrossRefGoogle Scholar
  121. Hanifa, A. M., T. R. Subramaniam &B. W. X. Ponnaiya. 1974. Role of silica in resistance to the leaf roller,Cnaphalocrocis medinalis Guenee, in rice. Indian J. Exp. Biol. 12: 463–465.Google Scholar
  122. Harbers, L. H., D. J. Raiten &G M. Paulsen. 1981. The role of plant epidermal silica as a structural inhibitor of rumen microbial digestion in steers. Nutr. Rep. Int. 24: 1057–1066.Google Scholar
  123. Harris, P. J. &R. D. Hartley. 1980. Phenolic constituents of the cell walls of monocotyledons. Biochem. Syst. Ecol. 8: 153–160.CrossRefGoogle Scholar
  124. Harvey, D. M. R. 1986. Applications of X-ray microanalysis in botanical research. Scanning Electron Microsc. 1986/3: 953–973.Google Scholar
  125. Hayward, D. M. &D. W. Parry. 1980. Scanning electron microscopy of silica deposits in the culms, floral bracts and awns of barley (Hordeum sativum Jess.). Ann. Bot. 46: 541–548.Google Scholar
  126. Heiberg, P. 1867–1868. Morphologisk-anatomisk beskrivelse ofEleocharis palustris. Bot. Tidsskr. 2: 157–225.Google Scholar
  127. Hering, L. 1900. Zur Anatomie der monopodialen Orchideen. Bot. Zentralbl. 84: 1–11, 35–45, 73–81, 113–122, 145–152, 177–184.Google Scholar
  128. Hodson, M. J. &A. Bell. 1986. The mineral relations of the lemma ofPhalaris canariensis L., with particular reference to its silicified macrohairs. Israel J. Bot. 35: 241–253.Google Scholar
  129. — &D. E. Evans. 1995. Aluminium/silicon interactions in higher plants. J. Exp. Bot. 46: 161–171.CrossRefGoogle Scholar
  130. — &A. G. Sangster. 1988. Silica deposition in the inflorescence bracts of wheat (Triticum aestivum), I: Scanning electron microscopy and light microscopy. Canad. J. Bot. 66: 829–838.Google Scholar
  131. ——. 1989a. Silica deposition in the inflorescence bracts of wheat (Triticum aestivum), II: X-ray microanalysis and backscattered electron imaging. Canad. J. Bot. 67: 281–287.CrossRefGoogle Scholar
  132. ——. 1989b. X-ray microanalysis of the seminal root ofSorghum bicolor with particular reference to silicon. Ann. Bot. 64: 659–667.Google Scholar
  133. ——. 1993. The interaction between silicon and aluminium inSorghum bicolor (L.) Moench: Growth analysis and X-ray microanalysis. Ann. Bot. 72: 389–400.CrossRefGoogle Scholar
  134. —,— &D. W. Parry. 1982. Silicon deposition in the inflorescence bristles and macrohairs ofSetaria italica (L.) Beauv. Ann. Bot. 50: 843–850.Google Scholar
  135. —,——. 1984. An ultrastructural study on the development of silicified tissues in the lemma ofPhalaris canariensis L. Proc. Roy. Soc. London, B, 222: 413–425.Google Scholar
  136. —,S. E. Williams &A. G. Sangster. 1997. Silica deposition in the needles of the gymnosperms, 1: Chemical analysis and light microscopy. Pp. 123–133in A. Pinilla, J. Juan-Tresserras & M. J. Machado (eds.), Estado actual de los estudios de fitolitos en suelos y plantas. Monografías del Centro de Ciencias Medioambientales, 4. Consejo Superior de Investigaciones Científicas and Centro de Ciencias Medioambientales, Madrid.Google Scholar
  137. Holtzmeier, M. A., W. L. Stern &W. S. Judd. 1998. Comparative anatomy and systematics of Senghas’s cushion species ofMaxillaria (Orchidaceae). Bot. J. Linn. Soc. 127: 43–82.Google Scholar
  138. Horrocks, M., Y. Deng, J. Ogden &D. G. Sutton. 2000. A reconstruction of the history of a Holocene sand dune on Great Barrier Island, northern New Zealand, using pollen and phytolith analyses. J. Biogeog. 27: 1269–1277.CrossRefGoogle Scholar
  139. Hryniewiecki, B. & W. Kurtz. 1936. La répartition des cônes siliceux dans les cellules des Cypéracées et leur corrélation. Bull. Int. Acad. Pol. Sci. Math. Nat., ser. Bl, 33–52.Google Scholar
  140. Huang, F. &M. Zhang. 2000. Pollen and phytolith evidence for rice cultivation during the Neolithic at Longquizhang, eastern Jianghuai, China. Veget. Hist. Archaeobot. 9: 161–168 (English).CrossRefGoogle Scholar
  141. Hutton, J. T. &K. Norrish. 1974. Silicon content of wheat husks in relation to water transport. Austral. J.Agric. Res. 25:203–212.CrossRefGoogle Scholar
  142. Iler, R. K. 1955. The colloid chemistry of silica and the silicates. Cornell Univ. Press, Ithaca, NY.Google Scholar
  143. Ishizuka, Y. 1971. Physiology of the rice plant. Adv. Agron. 23: 241–315.CrossRefGoogle Scholar
  144. Jiang, X. M. &Y. Zhou. 1989. SEM observation on crystals and silica in wood species of Chinese Gymnospermae. Acta Bot. Sin. 31: 835–840 + 1 plate (Chinese; English summary).Google Scholar
  145. Johnson, L. A. S. &D. F. Cutler. 1973 [1974].Empodisma: A new genus of Australasian Restionaceae. Kew Bull. 28: 381–385.CrossRefGoogle Scholar
  146. Jones, R. L. &A. H. Beavers. 1963. Some mineralogical and chemical properties of plant opal. Soil Sci. 96: 375–379.CrossRefGoogle Scholar
  147. Jones, L. H. P. &K. A. Handreck. 1965. Studies of silica in the oat plant, III: Uptake of silica from soils by the plant. Plant & Soil 23: 79–96.CrossRefGoogle Scholar
  148. ——. 1967. Silica in soils, plants, and animals. Adv. in Agron. 19: 107–149.CrossRefGoogle Scholar
  149. ——. 1969. Uptake of silica byTrifolium incarnatum in relation to the concentration in the external solution and to transpiration. Plant & Soil 30: 71–80.CrossRefGoogle Scholar
  150. —,A. A. Milne &J. V. Sanders. 1966. Tabashir: An opal of plant origin. Science 151: 464–466.PubMedCrossRefGoogle Scholar
  151. Juan-Tresserras, J., C. Lalueza, R. Albert &M. Calvo. 1997. Identification of phytoliths from human dental remains from the Iberian Peninsula and the Balearic Islands. Pp. 197–203in A. Pinilla, J. Juan-Tresserras & M. J. Machado (eds.), Estado actual de los estudios de fitolitos en suelos y plantas. Monografías del Centro de Ciencias Medioambientales, 4. Consejo Superior de Investigaciones Científicas and Centro de Ciencias Medioambientales, Madrid.Google Scholar
  152. Judd, W. S., W. L. Stern &V. I. Cheadle. 1993. Phylogenetic position ofApostasia andNeuwiedia (Orchidaceae). Bot. J. Linn. Soc. 113: 87–94.Google Scholar
  153. Kajale, M. D. &S. P. Eksambekar. 1997. Application of phytolith analyses to a neolithic site at Budihal, district Gulbarga, South India. Pp. 219–229in A. Pinilla, J. Juan-Tresserras & M. J. Machado (eds.), Estado actual de los estudios de fitolitos en suelos y plantas. Monografias del Centro de Ciencias Medioambientales, 4. Consejo Superior de Investigaciones Científicas and Centro de Ciencias Medioambientales, Madrid.Google Scholar
  154. Kaphahn, S. 1904–1905. Beiträge zur Anatomie der Rhynchosporeenblätter und zur Kenntnis der Verkieselungen. Beih. Bot. Zentralbl. 18(1): 233–272.Google Scholar
  155. Kaufman, P. B., L. B. Petering &J. G. Smith. 1970. Ultrastructural development of cork-silica cell pairs inAvena internodal epidermis. Bot. Gaz. 131: 173–185.CrossRefGoogle Scholar
  156. —,W. C. Bigelow, R. Schmid &N. S. Ghosheh. 1971. Electron microprobe analysis of silica in epidermal cells ofEquisetum. Amer. J. Bot. 58: 309–316.CrossRefGoogle Scholar
  157. —,Y. Takeoka, T. J. Carlson, W. C. Bigelow, J. D. Jones, P. H. Moore &N. S. Ghosheh. 1979 [1980]. Studies on silica deposition in sugarcane (Saccharum spp.) using scanning electron microscopy, energy-dispersive X-ray analysis, neutron activation analysis, and light microscopy. Phytomorphology 29: 185–193.Google Scholar
  158. —,P. Dayanandan, Y. Takeoka, W. C. Bigelow, J. D. Jones &R. Iler. 1981. Silica in shoots of higher plants. Pp. 409–449in T. L. Simpson & B. E. Volcani (eds.), Silicon and siliceous structures in biological systems. Springer-Verlag, New York.Google Scholar
  159. —,—,C. I. Franklin &Y. Takeoka. 1985. Structure and function of silica bodies in the epidermal system of grass shoots. Ann. Bot. 55: 487–507.Google Scholar
  160. Kaul, R. B. 1972. Adaptive leaf architecture in emergent and floatingSparganium. Amer. J. Bot. 59: 270–278.CrossRefGoogle Scholar
  161. Kealhofer, L. &D. R. Piperno. 1998. Opal phytoliths in Southeast Asian flora. Smithsonian Contrib. Bot. 88: 1–39.Google Scholar
  162. Keating, R. C. 2003. Anatomy of the monocotyledons, IX. Acoraceae and Araceae. Clarendon Press, Oxford.Google Scholar
  163. Kerns, B. K. 2001. Diagnostic phytoliths for a ponderosa pine-bunchgrass community near Flagstaff, Arizona. SW Naturalist 46: 282–294.CrossRefGoogle Scholar
  164. —,M. M. Moore &S. C. Hart. 2001. Estimating forest-grassland dynamics using soil phytolith assemblages and delta C—13 of soil organic matter. Ecoscience 8: 478–488.Google Scholar
  165. Killmann, W. &L. T. Hong. 1992. Some observations on the stegmata of palm trees. Pp. 424–429in J. P. Rojo, J. U. Aday, E. R. Barile, R. K. Araral & W. M. America (eds.), Proc. 2nd Pacific Regional Wood Anatomy Conf. 1989. For. Prod. Dev. Inst., College, Laguna, Philippines.Google Scholar
  166. Kohl, F. G. 1889. Anatomisch-physiologische Untersuchungen der Kieselsaure und Kalksalze in der Pflanze. Marburg.Google Scholar
  167. Kondo, R., C. Childs &I. Atkinson. 1994. Opal phytoliths of New Zealand. Manaaki Whenua Press, Lincoln, New Zealand.Google Scholar
  168. Konstanty, E. C. 1926. Ueber der Entstehung der Kristallzellreihen mit besonderer Berücksichtigung der Drogenpflanzen. Bot. Archiv 15: 131–186.Google Scholar
  169. Koyama, T. 1966. The systematic significance of leaf structure in the Cyperaceae-Mapanieae. Mem. New York Bot. Gard. 15: 136–159.Google Scholar
  170. —. 1967. The systematic significance of leaf structure in the tribe Sclerieae (Cyperaceae). Mem. New York Bot. Gard. 16: 46–70.Google Scholar
  171. Kress, W. J., L. M. Prince, W. J. Hahn &E. A. Zimmer. 2001. Unraveling the evolutionary radiation of the families of the Zingiberales using morphological and molecular evidence. Syst. Biol. 50: 926–944.PubMedCrossRefGoogle Scholar
  172. Kubitzki, K. (ed.). 1998. The families and genera of vascular plants, IV. Flowering plants: Monocotyledons: Alismatanae and Commelinanae (except Gramineae). Springer-Verlag, Berlin.Google Scholar
  173. Kukkonen, I. 1967. Vegetative anatomy ofUncinia (Cyperaceae). Ann. Bot., n.s., 31: 523–544.Google Scholar
  174. Kurzweil, H., H. P. Linder, W. L. Stern &A. M. Pridgeon. 1995. Comparative vegetative anatomy and classification of Diseae (Orchidaceae). Bot. J. Linn. Soc. 117: 171–220.Google Scholar
  175. Küster, E. 1897. Über die anatomischen Charaktere der Chrysobalaneen, insbesondere ihre Kieselablagerungen. Bot. Zentralbl. 69:46–54, 97–106, 129–139, 161–169, 193–202, 225–234 (also diss., Cassel).Google Scholar
  176. Lalueza, C., J. Juan &R. M. Albert. 1996. Phytolith analysis on dental calculus, enamel surface and burial soil: Information about diet and paleoenvironment. Amer. J. Phys. Anthropol. 101: 101–113.CrossRefGoogle Scholar
  177. Lanning, F. C. 1960. Nature and distribution of silica in strawberry plants. Proc. Amer. Soc. Hort. Sci. 76: 349–358.Google Scholar
  178. — &L. N. Eleuterius. 1983. Silica and ash in tissues of some coastal plants. Ann. Bot. 51: 835–850.Google Scholar
  179. ——. 1985. Silica and ash in tissues of some plants growing in the coastal areas of Mississippi, U.S.A. Ann. Bot. 56: 157–172.Google Scholar
  180. ——. 1989. Silica deposition in some C3 and C4 species of grasses, sedges and composites in the USA. Ann. Bot. 64: 395–410.Google Scholar
  181. —,T. L. Hopkins &J. C. Loera. 1980. Silica and ash content and depositional patterns in tissues of matureZea mays L. plants. Ann. Bot. 45: 549–554.Google Scholar
  182. Larcher, W., U. Meindl, E. Raiser &M. Ishikawa. 1991. Persistent supercooling and silica deposition in cell walls of palm leaves. J. Pl. Physiol. 139: 146–154.Google Scholar
  183. Laroche, J. 1968. Contribution à l’étude de l’Equisetumarvense L, III: Recherches sur la nature et la localisation de la silice chez le sporophyte. Rev. Gén. Bot. 75: 65–116.Google Scholar
  184. Lawton, J. R. 1980. Observations on the structure of epidermal cells, particularly the cork and silica cells, from the flowering stem internode ofLolium temulenium L. (Gramineae). Bot. J. Linn. Soc. 80: 161–177.CrossRefGoogle Scholar
  185. Le Cohu, M. C. 1973. Examen au microscope électronique à balayage, des cônes de silice chez les Cyperacées. Compt. Rend. Hebd. Acad. Sci., Paris, D, 277: 1301–1303.Google Scholar
  186. Le Coq, C., C. Guervin, J. Laroche &D. Robert. 1991. Modalités d’excrétion de la silice chez deux Ptéridophytes. Bull. Soc. Bot. Fr., 138: Act. Bot. (2), 231–234.Google Scholar
  187. Lewin, J. &B. E. F. Reismann. 1969. Silica and plant growth. Ann. Rev. Pl. Physiol. 20: 289–304.CrossRefGoogle Scholar
  188. Lim, L. L. &B. C. Stone. 1971. Notes on systematic foliar anatomy of the genusFreycinetia (Pandanaceae). J. Jap. Bot. 46: 207–220.Google Scholar
  189. Linder, H. P. 1984. A phylogenetic classification of the African Restionaceae. Bothalia 15: 11–76.Google Scholar
  190. —. 2000. Vicariance, climate change, anatomy and phylogeny of Restionaceae. Bot. J. Linn. Soc. 134: 159–177.CrossRefGoogle Scholar
  191. —,B. G. Briggs &L. A. S. Johnson. 1998. Restionaceae. Pp. 425–445in K. Kubitzki (ed.), The families and genera of vascular plants, IV. Flowering plants: Monocotyledons: Alismatanae and Commelinanae (except Gramineae). Springer-Verlag, Berlin.Google Scholar
  192. Linsbauer, K. 1911. Zur physiologischen Anatomie der Epidermis und des Durchluftungsapparates der Bromeliaceen. Sitzungsber. Akad. Wiss. Wien 120: 319–348.Google Scholar
  193. Lopez, P. &O. Matthei. 1995. Micromorfologia del aquenio en especies del géneroCyperus L. (Cyperaceae), Chile. Gayana, Bot. 52: 67–75 (Spanish; English summary).Google Scholar
  194. Lovering, T. S. 1959. Significance of accumulator plants in rock weathering. Bull. Geol. Soc. Amer. 70: 781–800.CrossRefGoogle Scholar
  195. Lowary, P. A. &C. J. Avers. 1965. Nucleolar variation during differentiation ofPhleum root epidermis. Amer. J. Bot. 52: 199–203.CrossRefGoogle Scholar
  196. Luceño, M. 1992. Estudios en la seccion Spirostachyae (Drejer) Bailey del generoCarex, I: Revalorizacion deC. helodes Link. Anal. Jard. Bot. Madrid 50: 73–81.Google Scholar
  197. Lurwick, L. E. &A. Johnston. 1969. Cumulic soils of the rough fescue prairie popular transition region. Canad. J. Soil Sci. 49: 199–203.Google Scholar
  198. Madella, M. 1997. Phytoliths from a Central Asia loess-paleosol sequence and modern soils: Their taphronomical and palaeoecological implications. Pp. 49–57in A. Pinilla, J. Juan-Tresserras & M. J. Machado (eds.), Estado actual de los estudios de fitolitos en suelos y plantas. Monografias del Centro de Ciencias Medioambientales, 4. Consejo Superior de Investigaciones Científicas and Centro de Ciencias Medioambientales, Madrid.Google Scholar
  199. Mann, S., S. B. Parker, C. C. Perry, M. D. Ross, A. J. Skarnulis & R. J. P. Williams. 1983a. Problems in the understanding of biominerals. Pp. 171–183in P. Westbroek & E. W. de Jong (eds.), Biomineralisation and biological metal accumulation. D. Reidel Publishing Company.Google Scholar
  200. -,C. C. Perry, R. J. P. Williams, C. A. Fyfe, G C. Gobbi & G J. Kennedy. 1983b. The characterisation of the nature of silica in biological systems. J. Chem. Soc. Chem. Commun. 168–170.Google Scholar
  201. Marumo, Y. &H. Yanai. 1986. Morphological analysis of opal phytoliths for soil discrimination in forensic science investigation. J. Forensic Sci. 31: 1039–1049.Google Scholar
  202. Matsuda, T., H. Kawahara &N. Chonan. 1983. Histological studies on breaking resistance of lower internodes in rice culm, II: Ultrastructural and histochemical observations on the secondary wall formation. Jap. J. Crop Sci. 52: 84–93 (Japanese; English summary).Google Scholar
  203. Mbida Mindzie, C., H. Doutrelepont, L. Vrydaghs, R. L. Swennen, R. J. Swennen, H. Beeckman, E. de Langhe &P. de Maret. 2001. First archaeological evidence of banana cultivation in central Africa during the third millennium before present. Veget. Hist. Archaeobot. 10: 1–6.CrossRefGoogle Scholar
  204. McKeague, J. A. &M. G. Cline. 1963. Silica in soil solutions, II: The absorption of monosilicic acid by soil and by other substances. Canad. J. Soil Sci. 43: 83–96.Google Scholar
  205. McNaughton, S. J. &J. L. Tarrants. 1983. Grass leaf silicification: Natural selection for an inducible defense against herbivores. Proc. Natl. Acad. U.S.A. 80: 790–791.CrossRefGoogle Scholar
  206. —,—,M. M. McNaughton &R. H. Davis. 1985. Silica as a defense against herbivory and a growth promotor in African grasses. Ecology 66: 528–535.CrossRefGoogle Scholar
  207. Mehra, P. N. &O. P. Sharma. 1963. Anatomy ofEleocharis plantaginea R. Br. Res. Bull. Panjab Univ., n.s., 14: 289–305.Google Scholar
  208. ——. 1965. Epidermal silica cells in the Cyperaceae. Bot. Gaz. 126: 53–58.CrossRefGoogle Scholar
  209. Menapace, F. J. 1991. A preliminary micromorphological analysis ofEleocharis (Cyperaceae) achenes for systematic potential. Canad. J. Bot. 69: 1533–1541.CrossRefGoogle Scholar
  210. — &D. E. Wujek. 1987. The systematic significance of achene micromorphology inCarex retrorsa (Cyperaceae). Brittonia 39: 278–283.CrossRefGoogle Scholar
  211. Metcalfe, C. R. 1960. Anatomy of the monocotyledons. I. Gramineae. Clarendon Press, Oxford.Google Scholar
  212. —. 1971. Anatomy of the monocotyledons. V. Cyperaceae. Clarendon Press, Oxford.Google Scholar
  213. — &L. Chalk. 1983. Anatomy of the dicotyledons. II. Wood structure and conclusion of the general introduction. Ed. 2. Clarendon Press, Oxford.Google Scholar
  214. Mettenius, G H. 1864. Über die Hymenophyllaceae. Abhandl. Kon. Sächs. Ges. Wiss., Math-Phys. Cl., 7: 403–504.Google Scholar
  215. Meyer, F. J. 1933. Beiträge zur vergleichenden Anatomie der Typhaceen (GattungTypha). Beih. Bot. Zentralbl. 51(1): 335–376.Google Scholar
  216. Michelangeli, F. A., J. I. Davis &D. W. Stevenson. 2003. Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from the mitochondrial and plastid genomes. Amer. J. Bot. 90: 93–106.CrossRefGoogle Scholar
  217. Miller, A. 1980. Phytoliths as indicators of farming techniques. Paper presented at the 45th annual meeting of the Society for American Archaeology, Philadelphia.Google Scholar
  218. Möbius, M. 1908a. Über die Festlegung der Kalksalze und Kieselkörper in der Pflanzenzellen. Ber. Deutsch. Bot. Ges. 26A: 29–37.Google Scholar
  219. —. 1908b. Uber ein eigentumliches Vorkommen von Kieselkörpern in der Epidermis und der Bau des Blattes vonCallisia repens. Wiesner Festschrift, Vienna.Google Scholar
  220. Molisch, H. 1913. Mikrochemie der Pflanze. G. Fischer, Jena, Germany (Ed. 3, 1923).Google Scholar
  221. —. 1918. Beiträge zur Mikrochemie der Pflanze, 12 und 13, 12: Über Riesenkieselkörper im Blatte vonArundo donax. Ber. Deutsch. Bot. Ges. 36: 474–481.Google Scholar
  222. —. 1920. Aschenbild und Pflanzenverwandtschaft. Sitzungsber. Akad. Wiss. Wien, Math-Nat. Kl. I, 129: 261–294.Google Scholar
  223. Møller, J. D. &H. Rasmussen. 1984. Stegmata in Orchidales: Character state distribution and polarity. Bot. J. Linn. Soc. 89: 53–76.CrossRefGoogle Scholar
  224. Molvray, M., P. J. Kores &M. W. Chase. 2000. Polyphyly of mycoheterotrophic orchids and functional influences on floral and molecular characters. Pp. 441–448in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.Google Scholar
  225. Montgomery, D. J. &D. W. Parry. 1979. The ultrastructure and analytical microscopy of silicon deposition in the intercellular spaces of the roots ofMolinia caerulea (L.) Moench. Ann. Bot. 44: 79–84.Google Scholar
  226. Moore, D. 1984. The role of silica in protecting Italian ryegrass (Lolium multiflorum) from attack by dipterous stem-boring larvae (Oscinella frit and other related species). Ann. Appl. Biol. 104: 161–166.CrossRefGoogle Scholar
  227. Morcote-Rios, G. &R. Bernai. 2001. Remains of palms (Palmae) at archaeological sites in the New World: A review. Bot. Rev. 67: 309–350.CrossRefGoogle Scholar
  228. Morris, M. W., W. L. Stern &W. S. Judd. 1996. Vegetative anatomy and systematics of subtribe Dendrobiinae (Orchidaceae). Bot. J. Linn. Soc. 120: 89–144.Google Scholar
  229. Muasya, A. M., D. A. Simpson, M. W. Chase &A. Culham. 1998. An assessment of suprageneric phylogeny in Cyperaceae using rbcL DNA sequences. Pl. Syst. Evol. 211: 257–271.CrossRefGoogle Scholar
  230. —,J. J. Bruhl, D. A. Simpson, A. Culham &M. W. Chase. 2000. Suprageneric phylogeny of Cyperaceae: A combined analysis. Pp. 593–601in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.Google Scholar
  231. Mulholland, S. C. 1989. Phytolith shape frequencies in North Dakota, U.S.A., grasses: A comparison to general patterns. J. Archaeol. Sci. 16: 489–512.CrossRefGoogle Scholar
  232. Munro, S. L. &H. P. Linder. 1998. The phylogenetic position ofPrionium (Juncaceae) within the order Juncales based on morphological and rbcL sequence data. Syst. Bot. 23: 43–55.CrossRefGoogle Scholar
  233. Nanda, H. P. &S. Gangopadhyay. 1984. Role of silicated cells in rice leaf on brown spot disease incidence byBipolaris oryzae. Int. J. Trop. Pl. Dis. 2(2): 89–98.Google Scholar
  234. Netolitzky, F. 1929. Die Kieselkörper. Die Kalksalze als Zellinhaltskörperc by F. Netolitzky. Calciumoxalatmonohydrat und trihydrat by A. Frey. Vol. III/la of Handbuch der Pflanzenanatomie. Berlin.Google Scholar
  235. Newman, R. H. &A. L. Mackay. 1983. Silica spicules in canary grass. Ann. Bot. 52: 927–929.Google Scholar
  236. Norris, F. M. G. 1983. Anatomy of the genusKyllinga in South Africa. Bothalia 14: 809–817.Google Scholar
  237. Norton, B. E. 1967. Occurrence of silica inLepidosperma limicola Wakefield. Austral. J. Sci. 29: 371–372.Google Scholar
  238. Oh, Y. C. &E. J. Ham. 1998. A taxonomic study onScirpus Linné (Cyperaceae) of Korea. Korean J. Pl. Taxon. 28: 217–247.Google Scholar
  239. — &H. J. Lee. 2001. A taxonomic study on section Acutae ofCarex L. in Korea (Cyperaceae). Korean J. Pl. Taxon. 31: 183–222 (Korean; English summary).Google Scholar
  240. —,C. S. Lee &K. J. Ryu. 2001. A taxonomic study on section Atratae ofCarex L. in Korea (Cyperaceae). Korean J. Pl. Taxon. 31: 223–251 (Korean; English summary).Google Scholar
  241. Okuda, A. &E. Takahashi. 1961. The effect of various amounts of silicon supply on the growth of the rice plant and nutrient uptake, part 3. J. Sci. Soil Manure, Japan 32: 533–537.Google Scholar
  242. ——. 1964. The role of silicon. Pp. 123–146in The mineral nutrition of the rice plant: Proceedings of the symposium of the International Rice Research Institute. John Hopkins Press, Baltimore, MD.Google Scholar
  243. Ollendorf, A. L. 1992. Toward a classification scheme of sedge (Cyperaceae) phytoliths. Pp. 91–111in G Rapp & S. C. Mulholland (eds.), Phytolith systematics: Emerging issues. Advances in Archaeological and Museum Science, 1. Plenum Press, New York & London.Google Scholar
  244. —,S. C. Mulholland &G. Rapp. 1987. Phytoliths from some Israeli sedges. Israel J. Bot. 36: 125–132.Google Scholar
  245. —,——. 1988. Phytolith analysis as a means of plant identification:Arundo donax andPhragmites communis. Ann. Bot. 61: 209–214.Google Scholar
  246. O’Neill, C., Q. Q. Pan, G. Clarke, F. S. Liu, G. Hodges, M. Ge, P. Jordan, Y. M. Chang, R. Newman &E. Toulson. 1982. Silica fragments from millet bran in mucosa surrounding oesophageal tumours in patients in northern China. Lancet 82–83: 1202–1206.CrossRefGoogle Scholar
  247. —,P. Jordan, T. Bhatt &R. Newman. 1986. Silica and oesophageal cancer. CIBA Foundation Symposia 121: 214–230.PubMedGoogle Scholar
  248. Palmer, P. G. &S. Gerbeth Jones. 1986. A scanning electron microscope survey of the epidermis of East African grasses, IV. Smithsonian Contrib. Bot. 62: 1–120.Google Scholar
  249. ——. 1988. A scanning electron microscope survey of the epidermis of East African grasses, V, and West African supplement. Smithsonian Contrib. Bot. 67: 1–157.Google Scholar
  250. — &A. E. Tucker. 1981. A scanning electron microscope survey of the epidermis of East African grasses, I. Smithsonian Contrib. Bot. 49: 1–84.Google Scholar
  251. ——. 1983. A scanning electron microscope survey of the epidermis of East African grasses, II. Smithsonian Contrib. Bot. 53: 1–72.Google Scholar
  252. —,S. Gerbeth Jones &S. Hutchison. 1985. A scanning electron microscope survey of the epidermis of East African grasses, III. Smithsonian Contrib. Bot. 55: 1–136.Google Scholar
  253. Parr, J. F., V. Dolic, G. Lancaster &W. E. Boyd. 2001. A microwave digestion method for the extraction of phytoliths from herbarium species. Rev. Palaeobot. Palynol. 116: 203–212.CrossRefGoogle Scholar
  254. Parry, D. W. &M. J. Hodson. 1982. Silica distribution in the caryopsis and inflorescence bracts of foxtail millet [Setaria italica (L.) Beauv.] and its possible significance in carcinogenesis. Ann. Bot. 49: 531–540.Google Scholar
  255. — &F. Smithson. 1958. Techniques for studying opaline silica in grass leaves. Ann. Bot., n.s., 22: 543–549.Google Scholar
  256. — &A. Winslow. 1977. Electron-probe microanalysis of silicon accumulation in the leaves and tendrils ofPisum sativum (L.) following root severance. Ann. Bot. 41: 275–278.Google Scholar
  257. —,M. J. Hodson &A. G. Sangster. 1984. Some recent advances in studies of silicon in higher plants. Phil. Trans. Roy. Soc. London, B, 304: 537–549.CrossRefGoogle Scholar
  258. —,C. O’Neill &M. J. Hodson. 1986. Opaline silica deposits in the leaves ofBidens pilosa L. and their possible significance in cancer. Ann. Bot. 58: 641–647.Google Scholar
  259. Pearsall, D. M. 1989. Paleoethnobotany. A handbook of procedures. Academic Press, San Diego.Google Scholar
  260. — &D. R. Piperno. 1990. Antiquity of maize cultivation in Ecuador: Summary and reevaluation of the evidence. Amer. Antiq. 55: 324–337.CrossRefGoogle Scholar
  261. —,—,E. H. Dinan, M. Umlauf, Z. Zhao &R. A. Benfer. 1995. Distinguishing rice (Oryza sativa Poaceae) from wildOryza species through phytolith analysis: Results of preliminary research. Econ. Bot. 49: 183–196.Google Scholar
  262. Peisl, P. 1957. Die Binsenform. Ber. Schweiz. Bot. Ges. 67: 99–213.Google Scholar
  263. Perry, C. C., S. Mann &R. J. P. Williams. 1984a. Structural and analytical studies of the silicified macrohairs from the lemma of the grassPhalaris canariensis L. Proc. Roy. Soc. London, B, 222: 427–438.Google Scholar
  264. —,—,—,F. Watt, G. W. Grime &J. Takacs. 1984b. A scanning proton microprobe study of macrohairs from the lemma of the grassPhalaris canariensis L. Proc. Roy. Soc. London, B, 222: 439–445.Google Scholar
  265. Petersen, O. G. 1893. Bidrag til Scitamineernes anatomi. K. Danske Vidensk. Selsk.Skr. (6)8: 337–418.Google Scholar
  266. Pfeiffer, H. 1920a. Zur Systematik der GattungChrysithrix L. und anderer Chrysithrichinae. Ber. Deutsch. Bot. Ges. 38: 6–10.Google Scholar
  267. -. 1920b. Revision der GattungFicinia Schrad. Bremen.Google Scholar
  268. —. 1921a. Beiträge zur Morphologie und Systematik der GattungenLagenocarpus undCryptangium I. Ber. Deutsch. Bot. Ges. 39: 125–134.Google Scholar
  269. —. 1921b. Der heutige Stand unsere Kenntnisse von den Kegelzellen der Cyperaceen. Ber. Deutsch. Bot. Ges. 39: 353–364.Google Scholar
  270. —. 1921c. Die Kegelzellen innerhalb der Gefässbündelscheide beiCladium mariscus R. Br. Beih. Bot. Zentralbl. 38(1): 401–404.Google Scholar
  271. —. 1922. Vergleichende Anatomie der Blätter der Lagenocarpus-Arten. Beih. Bot. Zentralbl. 39(2): 436–445.Google Scholar
  272. —. 1925. Aus der Entwicklungsgeschichte der Kegelzellen der Cyperaceen. Ber. Deutsch. Bot. Ges. 43: [26]-[32].Google Scholar
  273. —. 1927. Untersuchungen zur vergleichenden Anatomie der Cyperaceen, I: Die Anatomie der Blätter. Beih. Bot. Zentralbl. 44(1): 90–176.Google Scholar
  274. Pfister, R. 1892. Beitrag zur vergleichenden Anatomie der Sabaleen-Blätter. Diss., Zurich.Google Scholar
  275. Pfitzer, E. 1877. Beobachtungen über Bau und Entwicklung epiphytischer Orchideen, III: Über das Vorkommen von Kieselscheiben bei den Orchideen. Flora 60: 245–248.Google Scholar
  276. Pinilla, A., J. Juan-Tresserras &M. J. Machado (eds.). 1997. Estado actual de los estudios de fitolitos en suelos y plantas. Monografías del Centro de Ciencias Medioambientales, 4 Consejo Superior de Investigaciones Científicas and Centro de Ciencias Medioambientales, Madrid.Google Scholar
  277. Piperno, D. R. 1985. Phytolith analysis and tropical paleo-ecology: Production and taxonomic significance of siliceous forms in New World plant domesticates and wild species. Rev. Palaeobot. Palynol. 45: 185–228.CrossRefGoogle Scholar
  278. —. 1988. Phytolith analysis: An archaeological and geological perspective. Academic Press, San Diego.Google Scholar
  279. —. 1989. The occurrence of phytoliths in the reproductive structures of selected tropical angiosperms and their significance in tropical paleoecology, paleoethnobotany and systematics. Rev. Palaeobot. Palynol. 61: 147–173.CrossRefGoogle Scholar
  280. — &K. V. Flannery. 2001. The earliest archaeological maize (Zea mays L.) from highland Mexico: New accelerator mass spectrometry dates and their implications. Proc. Natl. Acad. U.S.A. 98: 2101–2103.CrossRefGoogle Scholar
  281. — &D. M. Pearsall. 1993. Phytoliths in the reproductive structures of maize and teosinte: Implications for the study of maize evolution. J. Archaeol. Sci. 20: 337–362.CrossRefGoogle Scholar
  282. ——. 1998. The silica bodies of tropical American grasses: Morphology, taxonomy, and implications for grass systematics and fossil phytolith identification. Smithsonian Contrib. Bot. 85: 1–40.Google Scholar
  283. Prat, H. 1931. L’Épiderme des Graminées: Étude anatomique et systématique. Thesis, Paris.Google Scholar
  284. Pridgeon, A. M. 1994. Systematic leaf anatomy of Caladeniinae (Orchidaceae). Bot. J. Linn. Soc. 114: 31–48.Google Scholar
  285. — &W. L. Stern. 1982. Vegetative anatomy ofMyoxanthus (Orchidaceae). Selbyana 7: 55–63.Google Scholar
  286. —,P. J. Cribb, M. W. Chase &F. N. Rasmussen. 2001. Genera Orchidacearum. 2. Orchidoideae (part 1). Oxford Univ. Press, Oxford.Google Scholar
  287. Prychid, C. J. &P. J. Rudall. 1999. Calcium oxalate crystals in Monocotyledons: A review of their structure and systematics. Ann. Bot. 84: 725–739.CrossRefGoogle Scholar
  288. ——. 2000. Distribution of calcium oxalate crystals in monocotyledons. Pp. 159–162in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.Google Scholar
  289. —,C. A. Furness &P. J. Rudall. 2003. Systematic significance of cell inclusions in Haemodoraceae and allied families: Silica bodies and tapetal raphides. Ann. Bot. 92: 571–580.PubMedCrossRefGoogle Scholar
  290. Puech, P.-F., C. Serratrice &F. F. Leek. 1983. Tooth wear as observed in ancient Egyptian skulls. J. Human Evol. 12: 617–629.CrossRefGoogle Scholar
  291. Quekett, J. 1852. Lectures on histology. Baillière, London.Google Scholar
  292. Ragonese, A. M., E. R. Guaglianone &C. Dizeo de Strittmatter. 1984. Desarrollo del pericarpio con cuerpos de silice de dos especies deRhynchospora Vahl (Cyperaceae). Darwiniana 25: 27–41 (English summary).Google Scholar
  293. Rapp, G. &S. C. Mulholland (eds.). 1992. Phytolith systematics: Emerging issues. Advances in Archaeological and Museum Science, 1. Plenum Press, New York & London.Google Scholar
  294. Rasmussen, H. 1986. An aspect of orchid anatomy and adaptationism. Lindleyana 1: 102–107.Google Scholar
  295. Raven, J. A. 1983. The transport and function of silicon in plants. Biol. Rev. 58: 179–207.CrossRefGoogle Scholar
  296. Rikli, M. 1895. Beiträge zur vergleichenden Anatomie der Cyperaceen mit besonderer Berücksichtigung der inneren Parenchymscheide. Jahrb. Wiss. Bot. 27: 485–580.Google Scholar
  297. Riquier, G. 1960. Les phytoliths de certains sols tropicaux et des podzals. Trans. Int. Congr. Soil Sci. 4: 425–431.Google Scholar
  298. Rolleri, C., A. M. Deferrari &M. de las M. Ciciarelli. 1987. Epidermis y estomatogenesis en Marattiaceae (Marattiales-Eusporangiopsida). Revista Mus. La Plata, n.s., 14, Bot. 94: 129–147.Google Scholar
  299. Rosanoff, S. 1871. Über Kieselsäureablagerungen in einigen Pflanzen. Bot. Ztg. 29: 749–753, 765–769.Google Scholar
  300. Rosen, A. M. 1992. Preliminary identification of silica skeletons from Near Eastern archaeological sites: An anatomical approach. Pp. 129–147in G. Rapp & S. C. Mulholland (eds.), Phytolith systematics: Emerging issues. Advances in Archaeological and Museum Science, 1. Plenum Press, New York & London.Google Scholar
  301. Rothbuhr, L. &F. Scott. 1957. A study of the uptake of silicon and phosphorus by wheat plants, with radiochemical methods. Biochem. J. 65: 241–245.PubMedGoogle Scholar
  302. Rovner, I. (ed.). 1986. Plant opal phytolith analysis in archaeology and paleoecology: Proceedings of the 1984 Phytolith Research Workshop, North Carolina State University, Raleigh, North Carolina. Occasional Paper of the Phytolitharien, 1. North Carolina State Univ., Raleigh.Google Scholar
  303. — &J. C. Russ. 1992. Darwin and design in phytolith systematics: Morphometric methods for mitigating redundancy. Pp. 253–276in G. Rapp & S. C. Mulholland (eds.), Phytolith systematics: Emerging issues. Advances in Archaeological and Museum Science, 1. Plenum Press, New York & London.Google Scholar
  304. Rudall, P. J. 1994. Anatomy and systematics of Iridaceae. Bot. J. Linn. Soc. 114: 1–21.Google Scholar
  305. —. 2000. ‘Cryptic’ characters in monocotyledons: Homology and coding: Revisiting old characters in the light of new data and new phytogenies. Pp. 114–123in R. Scotland & T. Pennington (eds.), Homology and Systematics. Taylor & Francis, London & New York.Google Scholar
  306. — &L. R. Caddick. 1994. Investigation of the presence of phenolic compounds in monocotyledonous cell walls, using UV fluorescence microscopy. Ann. Bot. 74: 483–491.CrossRefGoogle Scholar
  307. — &M. W. Chase. 1996. Systematics of Xanthorrhoeaceaesensu lato: Evidence for polyphyly. Telopea 6: 629–647.Google Scholar
  308. —,C. A. Furness, M. W. Chase &M. F. Fay. 1997. Microsporogenesis and pollen sulcus type in Asparagales (Lilianae). Canad. J. Bot. 75: 408–430.Google Scholar
  309. —,D. W. Stevenson &H. P. Linder. 1999. Structure and systematics ofHanguana, a monocotyledon of uncertain affinity. Austral. Syst. Bot. 12: 311–330.CrossRefGoogle Scholar
  310. Runge, F. &J. Runge. 1997. Opal phytoliths in East African plants and soils. Pp. 71–81in A. Pinilla, J. Juan-Tresserras & M. J. Machado (eds.), Estado actual de los estudios de fitolitos en suelos y plantas. Monografias del Centro de Ciencias Medioambientales, 4. Consejo Superior de Investigaciones Científicas and Centro de Ciencias Medioambientales, Madrid.Google Scholar
  311. Russ, J. C. &I. Rovner. 1989. Stereological identification of opal phytolith populations from wild and cultivatedZea. Amer. Antiq. 54: 784–792.CrossRefGoogle Scholar
  312. Sae-Oui, P., C. Rakdee &P. Thanmathorn. 2002. Use of rice husk ash as a filler in natural rubber vulcanizates: In comparison with other commercial fillers. J. Appl. Polymer Sci. 83: 2485–2493.CrossRefGoogle Scholar
  313. Sakai, W. S. &M. Thorn. 1979. Localization of silicon in specific cell wall layers of the stomatal apparatus of sugarcane by use of energy dispersive X-ray analysis. Ann. Bot. 44: 245–248.Google Scholar
  314. Sangster, A. G. 1968. Studies of opaline silica deposits in the leaf ofSieglingia decumbens L. ‘Bernh.’ using the scanning electron microscope. Ann. Bot. 32: 237–240.Google Scholar
  315. — &D. W. Parry. 1971. Silica deposition in the grass leaf in relation to transpiration and the effect of Dinitrophenal. Ann. Bot. 35: 667–677.Google Scholar
  316. ——. 1976. The ultrastructure and electron-probe microassay of silica deposits in the endodermis of the seminal roots ofSorghum bicolor (L.) Moench. Ann. Bot. 40: 447–459.Google Scholar
  317. —,M. J. Hodson &D. W. Parry. 1983. Silicon deposition and anatomical studies in the inflorescence bracts of fourPhalaris species with their possible relevance to carcinogenesis. New Phytol. 93: 105–122.CrossRefGoogle Scholar
  318. —,S. E. Williams &M. J. Hodson. 1997. Silica deposition in the needles of the Gymnosperms, 2: Scanning electron microscopy and x-ray microanalysis. Pp. 135–145in A. Pinilla, J. Juan-Tresserras & M. J. Machado (eds.), Estado actual de los estudios de fitolitos en suelos y plantas. Monografias del Centro de Ciencias Medioambientales, 4. Consejo Superior de Investigaciones Cientificas and Centro de Ciencias Medioambientales, Madrid.Google Scholar
  319. Sato, Y. I., H. Fujiwara &T. Udatsu. 1990. Morphological differences in silica body derived from motor cell of indica and japonica in rice. Jap. J. Breed. 40: 495–504 (Japanese; English summary).Google Scholar
  320. Schilling, E. 1918. Eigentümliche Ausgestaltung der Gefässbündelscheide beiEleocharis plantaginea. Z. Bot. 10: 512–516.Google Scholar
  321. Schmitt, U., G. Weiner &W. Liese. 1995. The fine structure of the stegmata inCalamus axillaris during maturation. IAWA Jl 16: 61–68.Google Scholar
  322. Schuyler, A. E. 1971. Scanning electron microscopy of achene epidermis in species ofScirpus (Cyperaceae) and related genera. Proc. Acad. Nat. Sci. Philadelphia 123(2): 29–52.Google Scholar
  323. Schwarz, K. 1973. A bound form of silicon and glycosamino-glycans and polysaccharides matrix/connective tissue. Proc. Natl. Acad. U.S.A. 70: 1608–1612.CrossRefGoogle Scholar
  324. Seberg, O. 1988. Leaf anatomy ofOreobolus R.Br. andSchoenoides Seberg (Cyperaceae). Bot. Jahrb. Syst. 110: 187–214.Google Scholar
  325. Sharma, O. P. &R. Shiam. 1984. Epidermal structures of culm inCyperus with a discussion of silica bodies in Cyperaceae. Bangladesh J. Bot. 13(1): 16–24.Google Scholar
  326. Siever, R. 1967. The silica budget in the sedimentary cycle. Amer. Mineralogist 42: 821–841.Google Scholar
  327. Smithson, E. 1956 [1957]. The comparative anatomy of the Flagellariaceae. Kew Bull. 491–501.Google Scholar
  328. Solereder, H. &F. J. Meyer. 1928–1933. Systematische Anatomie der Monokotyledonen. Borntraeger, Berlin (Heft 1, 155 pp., 1933. Heft 3, 175 pp., 1928. Heft 4, 176 pp., 1929. Heft 6, 242 pp., 1930)Google Scholar
  329. Solla, R. F. 1884. Sui cristàlli di sílice in série perifasciali nelle pàlme. Nòta preliminàre. Nuovo G. Bot. Ital. 16: 50–51.Google Scholar
  330. Sowers, A. E. &E. L. Thurston. 1979. Ultrastructural evidence for uptake of silicon-containing silicic acid analogs byUrtica pilulifera and incorporation into cell wall silica. Protoplasma 101: 11–22.CrossRefGoogle Scholar
  331. Standley, L. A. 1990. Anatomical aspects of the taxonomy of sedges (Carex, Cyperaceae). Canad. J. Bot. 68: 1449–1456.Google Scholar
  332. Stant, M. Y. 1973. Scanning electron microscopy of silica bodies and other epidermal features inGibasis (Tradescantia) leaf. Bot. J. Linn. Soc. 66: 233–244.CrossRefGoogle Scholar
  333. Starr, J. R. &B. A. Ford. 2001. The taxonomic and phylogenetic utility of vegetative anatomy and fruit epidermal silica bodies inCarex section Phyllostachys (Cyperaceae). Canad. J. Bot. 79: 362–379.CrossRefGoogle Scholar
  334. -,S. A. Harris & D. A. Simpson. 2003. The relevance of fruit epidermal silica body variation inUncinia Pers. (tribe Cariceae) to taxonomic and phylogenetic studies in the Cyperaceae. Abstracts, Monocots III.Google Scholar
  335. Stebbins, G. L. 1956. Cytogenetics and evolution of the grass family. Amer. J. Bot. 43: 890–905.CrossRefGoogle Scholar
  336. Sterling, C. 1967. Crystalline silica in plants. Amer. J. Bot. 54: 840–844.CrossRefGoogle Scholar
  337. Stern, W. L. 1997a. Vegetative anatomy of subtribe Orchidinae (Orchidaceae). Bot. J. Linn. Soc. 124: 121–136.CrossRefGoogle Scholar
  338. —. 1997b. Vegetative anatomy of subtribe Habenariinae (Orchidaceae). Bot. J. Linn. Soc. 125: 211–227.Google Scholar
  339. —. 1999. Comparative vegetative anatomy of two saprophytic orchids from tropical America:Wullschlaegelia andUleiorchis. Lindleyana 14: 136–146.Google Scholar
  340. — &W. S. Judd. 1999. Comparative vegetative anatomy and systematics ofVanilla (Orchidaceae). Bot. J. Linn. Soc. 131: 353–382.Google Scholar
  341. ——. 2000. Comparative anatomy and systematics of the orchid tribe Vanilleae excludingVanilla. Bot. J. Linn. Soc. 134: 179–202.CrossRefGoogle Scholar
  342. ——. 2001. Comparative anatomy and systematics of Catasetinae (Orchidaceae). Bot. J. Linn. Soc. 136: 153–178.Google Scholar
  343. ——. 2002. Systematic and comparative anatomy of Cymbidieae (Orchidaceae). Bot. J. Linn. Soc. 139: 1–27.CrossRefGoogle Scholar
  344. — &M. W. Morris. 1992. Vegetative anatomy ofStanhopea (Orchidaceae) with special reference to pseudobulb water-storage cells. Lindleyana 7: 34–53.Google Scholar
  345. — &W. M. Whitten. 1999. Comparative vegetative anatomy of Stanhopeinae (Orchidaceae). Bot. J. Linn. Soc. 129: 87–103.CrossRefGoogle Scholar
  346. —,V. I. Cheadle &J. Thorsch. 1993a. Apostasiads, systematic anatomy, and the origins of Orchidaceae. Bot. J. Linn. Soc. 111: 411–455.Google Scholar
  347. —,M. W. Morris, W. S. Judd, A. M. Pridgeon &R. L. Dressier. 1993b. Comparative vegetative anatomy and systematics of Spiranthoideae (Orchidaceae). Bot. J. Linn. Soc. 113: 161–197.Google Scholar
  348. Stevenson, D. W., J. I. Davis, J. V. Freudenstein, C. R. Hardy, M. P. Simmonds &C. D. Specht. 2000. A phylogenetic analysis of the monocotyledons based on morphological and molecular character sets, with comments on the placement ofAcorus and Hydatellaceae. Pp. 17–24in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.Google Scholar
  349. Stewart, D. R. M. 1965. The epidermal characters of grasses, with special reference to East African plains species. Bot. Jahrb. Syst. 84: 63–116, 117–174.Google Scholar
  350. Stromberg, C. A. E. 2002. The origin and spread of grass-dominated ecosystems in the late Tertiary of North America: Preliminary results concerning the evolution of hypsodonty. Palaeogeog. Palaeoclim. Palaeoecol. 177: 59–75.CrossRefGoogle Scholar
  351. Struve, G. A. 1835. De silicia in plantis nonnullis. Diss., Berolini.Google Scholar
  352. Suwanprateeb, J. &K. Hatthapanit. 2002. Rice-husk-ash-based silica as a filler for embedding composites in electronic devices. J. Appl. Polymer Sci. 86: 3013–3020.CrossRefGoogle Scholar
  353. Suzuki, H. 1937. Studies on the relation between the anatomical characters of the rice plant and its susceptibility to blast disease. J. Coll. Agric. Tokyo Univ. 14: 181–264.Google Scholar
  354. Takahashi, E. &Y. Miyake. 1977. Silicon and plant growth: Proceedings of the International Seminar on Soil Environment and Fertility Management in Intensive Agriculture.Google Scholar
  355. Takeoka, Y., P. B. Kaufman &O. Matsumura. 1979 [1980]. Comparative microscopy of idioblasts in lemma epidermis of some C3 and C4 grasses (Poaceae) using SUMP method. Phytomorphology 29: 330–337.Google Scholar
  356. Tallent, R. C. &D. E. Wujek. 1983. Scanning electron microscopy an aid to taxonomy of sedges (Cyperaceae:Carex). Micron Microsc. Acta 14: 271–272.CrossRefGoogle Scholar
  357. Tillich, H.-J. &E. Sill. 1999. Morphologische und anatomische Studien anHanguana Blume (Hanguanaceae) undFlagellaria L. (Flagellariaceae), mit der Beschreibung einer neuen Art,Hanguana bogneri spec. nov. Sendtnera 6: 215–238 (English summary).Google Scholar
  358. Toivonen, H. &T. Timonen. 1976. Perigynium and achene epidermis in some species ofCarex, subg.Vignea (Cyperaceae), studied by scanning electron microscopy. Ann. Bot. Fenn. 13: 49–59.Google Scholar
  359. Tomlinson, P. B. 1956. Studies in the systematic anatomy of the Zingiberaceae. J. Linn. Soc., Bot. 55: 547–592.CrossRefGoogle Scholar
  360. —. 1959. An anatomical approach to the classification of the Musaceae. J. Linn. Soc., Bot. 55: 779–809.CrossRefGoogle Scholar
  361. —. 1960. The anatomy ofPhenakospermum (Musaceae). J. Arnold Arbor. 41: 287–297.Google Scholar
  362. —. 1961a. The anatomy ofCanna. J. Linn. Soc., Bot. 56: 467–473.CrossRefGoogle Scholar
  363. —. 1961b. Anatomy of the monocotyledons. II. Palmae. Clarendon Press, Oxford.Google Scholar
  364. —. 1961c. Morphological and anatomical characteristics of the Marantaceae. J. Linn. Soc., Bot. 58: 55–78.CrossRefGoogle Scholar
  365. —. 1962. Phylogeny of the Scitamineae—Morphological and anatomical considerations. Evolution 16: 192–213.CrossRefGoogle Scholar
  366. —. 1965. Notes on the anatomy ofAphyllanthes (Liliaceae) and comparison with Eriocaulaceae. J. Linn. Soc., Bot. 59: 163–173.CrossRefGoogle Scholar
  367. —. 1966. Anatomical data in the classification of Commelinaceae. J. Linn. Soc. 59: 371–395.CrossRefGoogle Scholar
  368. —. 1969. Anatomy of the Monocotyledons. III. Commelinales—Zingiberales. Clarendon Press, Oxford.Google Scholar
  369. —. 1974. Development of the stomatal complex as a taxonomic character in the monocotyledons. Taxon 23: 109–128.CrossRefGoogle Scholar
  370. Toscano de Brito, A. L. V. 1998. Leaf anatomy of Ornithocephalinae (Orchidaceae) and related subtribes. Lindleyana 13: 234–258.Google Scholar
  371. Tucker, G. C. &N. G. Miller. 1990. Achene microstructure inEriophorum (Cyperaceae): Taxonomic implications and paleobotanical applications. Bull. Torrey Bot. Club 117: 266–283.CrossRefGoogle Scholar
  372. Twiss, P. C., E. Suess &R. M. Smith. 1969. Morphological classification of grass phytoliths. Proc. Soil Sci. Soc Amer. 33: 109–115.Google Scholar
  373. Udatsu, T. &H. Fujiwara. 1993. Application of the discriminant function to subspecies of rice (Oryza sativa) using the shape of motor cell silica body. Ethnobotany 5: 107–116.Google Scholar
  374. Uhl, N. W. &J. Dransfield. 1987. Genera palmarum: A classification of palms based on the work of Harold E. Moore, Jr. The L. H. Bailey Hortorium and the International Palm Society. Allen Press, Lawrence, KS.Google Scholar
  375. Umemoto, K. &K. Hozumi. 1971a. Applications of low-temperature ashing with high-frequency oxygen plasma in pharmacognostical studies: Observations of silicon bodies in ashed tissues of leaves ofBambusa multiplex Raeuschel and stems ofEquisetum hyemale L. andEquisetum ramosissimum Desf. var.japonicum Milde. Yakugaku Zasshi 91: 850–854 (Japanese; English summary). [Biol. Abstr. 853 (1972) No. 44793]PubMedGoogle Scholar
  376. ——. 1971b. Applications of low-temperature ashing with high-frequency oxygen plasma in pharmacognostical studies: Method for observation of mineral microstructures. Yakugaku Zasshi 91: 890–895 (Japanese; English summary). [Biol. Abstr. 853 (1972) No. 44797]PubMedGoogle Scholar
  377. -,M. Hutoh & K. Hozumi. 1973. Identification of the plant source of the Chinese crude drug “Dan-zhu-ye” using the low-temperature plasma ashing technique. Mikrochim. Acta (2): 301–313.Google Scholar
  378. Van Soest, P. J. &L. H. P. Jones. 1968. Effect of silica in forages upon digestibility. J. Dairy Sci. 51: 1644–1648.CrossRefGoogle Scholar
  379. Vicari, M. &D. R. Bazely. 1993. Do grasses fight back? The case for antiherbivore defences. Trends Ecol. Evol. 8(4): 137–141.CrossRefGoogle Scholar
  380. Von Mohl, H. 1861. Über das Kieselskelett lebender Pflanzenzellen. Bot. Ztg. 19: 209–215, 217–221, 225–231,305–308.Google Scholar
  381. Wadham, M. D. &D. W. Parry. 1981. The silicon content ofOryza sativa L. and its effect on the grazing behaviour ofAgriolimax reticulatus Muller. Ann. Bot. 48: 399–402.Google Scholar
  382. Walter, K. S. 1975. A preliminary study of the achene epidermis of certainCarex (Cyperaceae) using scanning electron microscopy. Michigan Bot. 14: 67–72.Google Scholar
  383. Wang, Y. & H. Lu. 1993. The study of phytolith and its application. China Ocean Press, n.p.Google Scholar
  384. Waterway, M. J. 1990. Systematic implications of achene micromorphology inCarex section Hymenochlaenae (Cyperaceae). Canad. J. Bot. 68: 630–639.CrossRefGoogle Scholar
  385. Webb, M. A. &H. J. Arnott. 1982. A survey of calcium oxalate crystals and other mineral inclusions in seeds. Scan. Electron Microscop. 1982(3): 1109–1131.Google Scholar
  386. Weiner, G. 1992. Zur Stammanatomie der Rattanpalmen. Diss., Hamburg.Google Scholar
  387. — &W. Liese. 1990. Rattans—Stern anatomy and taxonomic implications. IAWA Bull., n.s., 11:61–70.Google Scholar
  388. Welle, B. J. H. ter. 1976. Silica grains in woody plants of the Neotropics, especially Surinam. Pp. 107–142in P. Baas, A. J. Bolton & D. M. Catling (eds.), Wood structure in biological and technological research. Leiden Botanical Series, 3. Leiden Univ. Press, Leiden, Netherlands.Google Scholar
  389. Whang, S. S., K. Kim &W. M. Hess. 1998. Variation of silica bodies in leaf epidermal long cells within and among seventeen species ofOryza (Poaceae). Amer. J. Bot. 85: 461–466.CrossRefGoogle Scholar
  390. Wieler, A. 1893. Ueber das Vorkommen von Verstopfungen in den Gefässen mono- und dicoty 1er Pflanzen. Medeel. Proefstation Midden-Java 1–41.Google Scholar
  391. —. 1897. Beiträge zur Anatomie des Stockes vonSaccharum. Beitr. Wiss. Bot. 2: 141.Google Scholar
  392. Wiesner, J. 1867. Einleitung in die technische Mikroskopie. Vienna.Google Scholar
  393. Wilczek, E. 1892. Beiträge zur Kenntniss des Baues der Frucht und des Samens der Cyperaceen. Diss., Zurich (also Bot. Zentralbl. 51: 129–138, 193–201, 225–233, 257–265).Google Scholar
  394. Wilding, L. P. & L.R. Drees. 1968. Biogenetic opal in soils as an index of vegetative history in the Prairie Peninsula. Pp. 99–103in R. E. Bergstrom (ed.), The Quaternary of Illinois: A symposium in observance of the centennial of the University of Illinois. Special Publ. No. 14. Univ. of Illinois, College of Agriculture, Urbana.Google Scholar
  395. ——. 1974. Contributions of forest opal and associated crystalline phases to fine silt and clay fractions of soils. Clays and Clay Minerals 22: 295–306.CrossRefGoogle Scholar
  396. —,N. E. Smeck &L. R. Drees. 1977. Silica in soils: Quartz, cristobalite, tridymite and opal. Pp. 471–552in Minerals in soil environments. Soil Science Society of America, Madison.Google Scholar
  397. Wille, F. 1926. Beiträge zur Anatomie des Cyperaceenrhizoms. Beih. Bot. Zentralbl. 43(1): 267–309.Google Scholar
  398. Wujek, D. E. &F. J. Menapace. 1986. Taxonomy ofCarex Section Folliculatae using achene morphology. Rhodora 88: 399–403.Google Scholar
  399. Yoshida, S. 1965. Chemical aspects of the role of silicon in physiology of the rice plant. Bull. Natl. Inst. Agric. Sci., Japan, ser. B, 15: 1–58 (Japanese; English summary). [Biol. Abstr. 48 (1967) No. 66506]Google Scholar
  400. —,Y. Ohnishi &K. Kitagishi. 1959. Role of silicon in rice nutrition. Soil Sci. Pl. Nutr. 9: 49–53.Google Scholar
  401. —,A. F. Douglas, H. C. James &A. G. Kwanchai. 1976. Laboratory manual for physiological studies of rice. IRRI Press, Los Baños, Philippines.Google Scholar
  402. Yukawa, T. &W. L. Stern. 2002. Comparative vegetative anatomy and systematics ofCymbidium (Cymbidieae: Orchidaceae). Bot. J. Linn. Soc. 138: 383–419.CrossRefGoogle Scholar
  403. Zhao, Z., D. M. Pearsall, R. A. Benfer &D. R. Piperno. 1998. Distinguishing rice (Oryza saliva Poaceae) from wildOryza species through phytolith analysis, II: Finalized method. Econ. Bot. 52: 134–145.Google Scholar
  404. Zörnig, H. 1903. Beiträge zur Anatomie der Coelogyninen. Bot. Jahrb. Syst. 33: 618–741 (also diss., Heidelberg).Google Scholar

Copyright information

© The New York Botanical Garden 2004

Authors and Affiliations

  • Christina J. Prychid
    • 1
  • Paula J. Rudall
    • 1
  • Mary Gregory
    • 1
  1. 1.Jodrell LaboratoryRoyal Botanic GardensRichmondEngland

Personalised recommendations