The Botanical Review

, Volume 69, Issue 3, pp 300–319 | Cite as

Allelopathic evidence in the Poaceae

  • A. M. Sánchez-Moreiras
  • O. A. Weiss
  • M. J. Reigosa-Roger


The Poaceae family has been reported in several published works to show evidence of allelopathic activity. Secondary metabolites as phenolic compounds, hydroxamic acids, flavonoids, etc. commonly occur in both cultivated and wild Gramineae. This article, therefore, attempts to review and synthesize past and recent findings concerning the allelopathic activity of this family. It reviews the type of the activity (stimulative or inhibitive), the donor plant, the target species, and the mode of action in each case.


Botanical Review Root Exudate Hydroxamic Acid Sorghum Bicolor Allelopathic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Trabajos ya publicados han mostrado a lo largo de los últimos años, que numerosas especies de la familia Poaceae presentan evidencia alelopática. Metabolites secundarios como compuestos fenólicos, ácidos hidroxámicos, flavonoides, etc., aparecen habitualmente en gramineas cultivadas y salvajes. Este articulo pretende, por ello, hacer una revisión y sintetizar, al mismo tiempo, el pasado y el presente de la investigatión llevada a cabo acerca de la capacidad alelopática de estas plantas. Destacaremos así, el tipo de actividad (estimuladora o inhibidora), la planta donadora, la planta receptora y el modo de actión en cada caso.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abdul, H. &S. W. Adkins. 1998. Allelopathic effects ofTriticum speltoides on two important weeds of wheat. Plant Prot. Quart. 13: 33–35.Google Scholar
  2. Abdul-Rahman, A. A. S. &F. A. G. Al-Naib. 1986. The effects of bermudagrassCynodon dactylon (L.) Pers. on the germination and seedling growth of cotton and three weed species. JAWRR 5: 115–128.Google Scholar
  3. — &S. A. Habib. 1986. Effectiveness of herbicides and some plant extracts in controlling dodder on alfalfa. JAWRR 5: 53–64.Google Scholar
  4. Afentouli, C. G. &I. G. Eleftherohorinos. 1996. Littleseed canarygrass (Phalaris minor) and shortspiked canarygrass (Phalaris brachystachys) interference in wheat and barley. Weed Sci. 44: 560–565.Google Scholar
  5. Alsaadawi, I. S., J. K. Al-Uqaili, A. J. Alrubeaa &S. M. Al-Hadithy. 1986. Allelopathic suppression of weeds and nitrification by selected cultivarsof Sorghum bicolor (L.) Moench. J. Chem. Ecol. 12: 209–219.Google Scholar
  6. —,K. H. Y. Zwain &H. A. Shahata. 1998. Allelopathic inhibition of rice by wheat residues. Allelopathy J. 5: 163–169.Google Scholar
  7. An, M., J. E. Pratley &T. Haig. 1996. Differential phytotoxicity ofVulpia species and their plant parts. Allelopathy J. 3: 185–194.Google Scholar
  8. ———. 1997a. Phytotoxicity ofVulpia residues, I. Investigation of aqueous extracts. J. Chem. Ecol. 23: 1979–1995.Google Scholar
  9. ——— &P. Jellet. 1997b. Genotypic variation of plant species to the allelopathic effects of vulpia residues. Aust. J. Exp. Agric. 37: 647–660.Google Scholar
  10. Anaya, A. L., B. E. Hernández-Baurista, M. Jiménez-Estrada &L. Velasco-lbarra. 1992. Phenylacetic acid as a phytotoxic compound of corn pollen. J. Chem. Ecol. 18: 897–905.Google Scholar
  11. Bakker, C. &J. J. E. Loonen-Maarten. 1998. The influence of goose grazing on the growth ofPoa arctica: Overestimation of overcompensation. Oikos 82: 459–466.Google Scholar
  12. Barnes, J. P., A. R. Putnam, B. A. Burke &A. J. Aasen. 1987. Isolation and characterization of allelochemicals in rye herbage. Phytochemistry 26: 1385–1390.Google Scholar
  13. Beck, D. L., G. M. Dunn, D. G. Routley &J. S. Bowman. 1983. Biochemical basis of resistance in corn to the corn leaf aphid. Crop Sci. 23: 995–998.Google Scholar
  14. Ben-Hammouda, M., R. J. Kremer, H. C. Minor &M. Sarwar. 1995a. A chemical basis for differential allelopathic potential of sorghum hybrids on wheat. J. Chem. Ecol. 21: 775–786.Google Scholar
  15. ————. 1995b. Phytotoxicity of extracts from sorghum plant components on wheat seedlings. Crop Sci. 35: 1652–1656.Google Scholar
  16. Bhowmik, P. C. &J. D. Doll. 1982. Corn and soybean response to allelopathic effects of weed and crop residues. Agron. J. 74: 601–606.Google Scholar
  17. ——. 1984. Allelopathic effects of annual weed residues on growth and nutrient uptake of corn and soybeans. Agron. J. 76: 383–388.Google Scholar
  18. Blum, U., T. M. Gerig, A. D. Worsham, L. D. Holappa &L. D. King. 1992. Allelopathic activity in wheat-conventional and wheat-no-till soils: Development of soil extract bioassays. J. Chem. Ecol. 18: 2191–2220.Google Scholar
  19. Brecke, B. J. &D. G. Shilling. 1996. Effect of crop species, tillage, and rye mulch on sicklepod (Senna obtusifolia). Weed Sci. 44: 133–136.Google Scholar
  20. Challa, P. &V. Ravindra. 1998. Allelopathic effects of major weeds on vegetable crops. Allelopathy J. 5: 89–92.Google Scholar
  21. Chase, W. R., M. G. Nair &A. R. Putnam. 1991. 2,2′-oxo-1,1′-azobenzene: Selective toxicity of rye (Secale cereale L.) allelochemicals to weed and crop species, II. J. Chem. Ecol.17: 9–19.Google Scholar
  22. Cheema, Z. A. &A. Khaliq. 2000. Use of sorghum allelopathic properties to control weeds in irrigated wheat in a semi arid region of Punjab. Agric. Ecosyst. Envir. 79: 105–112.Google Scholar
  23. Chou, C. H. &Y.-F. Lee. 1991. Allelopathic dominance ofMiscanthus transmorrisonensis in an alpine grassland community in Taiwan. J. Chem. Ecol. 17: 2267–2281.Google Scholar
  24. — &H. J. Lin. 1976. Autointoxication mechanism ofOryza sativa, I. Phytotoxic effects of decomposing rice residues in soil. J. Chem. Ecol. 2: 353–367.Google Scholar
  25. — &Z. A. Patrick. 1976. Identification and phytotoxic activity of compounds produced during decomposition of corn and rye residues in soil. J. Chem. Ecol. 2: 369–387.Google Scholar
  26. —,Y. C. Chiang &H. H. Cheng. 1981. Autointoxication mechanism ofOryza sativa. III. Effect of temperature on phytotoxin production during rice straw decomposition in soil. J. Chem. Ecol. 7: 741–752.Google Scholar
  27. Chung, I. M. &D. A. Miller. 1995. Allelopathic influence of nine forage grass extracts on germination and seedling growth of alfalfa. Agron. J. 87: 767–777.Google Scholar
  28. Contreras, E. F. &H. M. Niemeyer. 1997. DIMBOA glucoside, a wheat chemical defense affects host acceptance and suitability ofSitobion avenae to the cereal aphid parasitoidAphidius rhopalosiphi. J. Chem. Ecol. 24: 371–382.Google Scholar
  29. Copaja, S. V., H. M. Niemeyer &S. D. Wratten. 1991. Hydroxamic acid levels in Chilean and British wheat seedlings. Ann. Appl. Biol. 118: 223–227.Google Scholar
  30. Corcuera, L. J., M. D. Woodward, J. P. Helgeson, A. Kelman &C. D. Upper. 1978. 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one, an inhibitor fromZea mays with differential activity against soft rottingErwinia species. Plant Physiol. 61: 791–795.PubMedGoogle Scholar
  31. —,V. H. Argandoña &G. E. Zúñiga. 1992. Allelochemicals in wheat and barley: Role in plantinsect interactions. Pp. 119–127in S. J. H. Rizvi & V. Rizvi (eds.), Allelopathy: basic and applied aspects. Chapman & Hall, London.Google Scholar
  32. Creamer, N. G., M. A. Bennett, B. R. Stinner, J. Cardina &E. E. Regnier. 1996. Mechanisms of weed suppression in cover crop-based production systems. Hortscience 31: 410–413.Google Scholar
  33. Dzubenko, N. N. &N. I. Petrenko. 1971. Pp. 60–66in A. M. Gnodzinsky (ed.), Biochemical and physiological basis for plant interactions in phytocenosis. Naukova, Dumka, Kiev, Ukraine.Google Scholar
  34. Einhellig, F. A. &J. A. Rasmussen. 1989. Prior cropping with grain sorghum inhibits weeds. J. Chem. Ecol. 15: 951–960.Google Scholar
  35. — &I. F. Souza. 1992. Phytotoxicity of sorgoleone found in grain sorghum root exudates. J. Chem. Ecol. 18: 1–11.Google Scholar
  36. —,J. A. Rasmussen, A. M. Hejl &I. F. Souza. 1993. Effects of root exudate sorgoleone on photosynthesis. J. Chem. Ecol. 19: 369–375.Google Scholar
  37. Eussen, J. H. H. 1979. Isolation of growth inhibiting substances from alang-alang (Imperata cylindrica (L.) Beauv. var.major). Pp. 138–152in Proceedings of the Sixth Asian-Pacific Weed Science Society, Jakarta, Indonesia, July 11–17, 1977. Asian-Pacific Weed Science Society, Jakarta.Google Scholar
  38. FAO (Food and Agriculture Organization). 1991. 1990 production yearbook. Basic Data Unit, Statistics Division, FAO Statistic Series, Vol. 44. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  39. —. 1992. 1991 production yearbook. Basic Data Unit, Statistics Division, FAO Statistic Series, Vol. 45. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  40. —. 1993. 1992 production yearbook. Basic Data Unit, Statistics Division, FAO Statistic Series, Vol. 46. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  41. —. 1995. 1994 production yearbook. Basic Data Unit, Statistics Division, FAO Statistic Series, Vol. 48. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  42. —. 1998. 1997 production yearbook. Basic Data Unit, Statistics Division, FAO Statistic Series, Vol. 51. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  43. Fay, P. K. &W. B. Duke. 1977. An assessment of allelopathic potential inAvena germplasm. Weed Sci. 25: 224–228.Google Scholar
  44. Frey, L. 1997. Distribution ofAgrostis rupestris andA. alpina (Poaceae) and remarks on their taxonomy and karyology. Fragmenta Florist. Geobot. 42: 25–42.Google Scholar
  45. Friebe, A., U. Roth, P. Kück, H. Schnabl &M. Schulz. 1997. Effects of 2,4-dihydroxy-l,4-benzoxazin-3-ones on the activity of plasma membrane H+-ATPase. Phytochemistry 44: 979–983.Google Scholar
  46. Fujii, Y. 1994. The allelopathic effect of some rice varieties. Integr. Manag. Paddy Aqu. Weeds Asia. FFTC book series 45: 160–165.Google Scholar
  47. Gagliardo, R. W. &W. S. Chilton. 1992. Soil transformation of 2(3H)-benzoxazolone of rye into phytotoxic 2-amino-3H-phenoxazin-3-one. J. Chem. Ecol. 18: 1683–1691.Google Scholar
  48. Gauthier, P. &A. Bcdecarrats. 1998. Ecotypical differentiation ofDactylis glomerata andPoa alpina (Poaceae) in the Alps: Contribution of reciprocal transplant and common garden experiment. Ecologie Brunoy 29: 357–362.Google Scholar
  49. Givovich, A., J. Sandström, H. M. Niemeyer &J. Pettersson. 1994. Presence of a hydroxamic acid glucoside in wheat phloem sap, and its consequences for performance ofRhopalosiphum padi (L.) (Homoptera: Aphididae). J. Chem. Ecol. 20: 1923–1930.Google Scholar
  50. González, V. M., J. Kazimir, C. Nimbal, L. A. Weston &G. M. Cheniae. 1997. Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. J. Agric. Food Chem. 45: 1415–1421.Google Scholar
  51. Guenzi, W. D. &T. M. McCalla. 1966. Phenolic acids in oat, wheat, sorghum, and corn residues and their phytotoxicity. Agron. J. 58: 303–304.Google Scholar
  52. —— &F. A. Norstadt. 1967. Presence and persistence of phytotoxic substances in wheat, oat, corn and sorghum residues. Agron. J. 59: 163–165.Google Scholar
  53. Gwynn-Jones, D. &U. Johanson. 1996. Growth and pigment production in two subarctic grass species under four different UV-B irradiation levels. Physiol. Plant. 97: 701–707.Google Scholar
  54. Hagen, R. D. 1989. Isolation and identification of 5-hydroxy-indore-3-acetic acid and 5-hydroxy tryptophan, major allelopathic aglycons in quackgrass (Agropyron repens). J. Agric. Food Chem. 37: 1143–1149.Google Scholar
  55. Hedin, P. A., F. M. Davis &W. P. Williams. 1993. 2-hydroxy-4,7-dimethoxy-l,4-benzoxazin-3-one (N-O-Me-DIMBOA), a possible toxic factor in corn to the southwestern corn borer. J. Chem. Ecol. 19: 531–542.Google Scholar
  56. Heywood, V. H. (ed.). 1978. Flowering plants of the world. Oxford University Press, London.Google Scholar
  57. Hoffman, M. L., L. A. Weston, J. C. Snyder &E. E. Regnier. 1996a. Allelopathic influence of germinating seeds and seedlings of cover crops on weed species. Weed Sci. 44: 579–584.Google Scholar
  58. ————. 1996b. Separating the effects of sorghumSorghum bicolor and ryeSecale cereale root and shoot residues on weed development. Weed Sci. 44: 402–407.Google Scholar
  59. Hu, F. D. &R. J. Jones. 1997. Effects of plant extracts ofBothriochloa pertusa andUrochloa mosambicensis on seed germination and seedling growth ofStylosanthes hamata cv. Verano andStylosanthes scabra cv. Seca. Aust. J. Agric. Res. 48: 1257–1264.Google Scholar
  60. Hussain, F. &N. Abidi. 1991. Allelopathy exhibited byImperata cylindrica (L.) P. Beauv. Pakist. J. Bot. 23: 15–25.Google Scholar
  61. Inderjit &K. M. M. Dakshini. 1991. Investigations on some aspects of chemical ecology of cocongrass,Imperata cylindrica (L.) Beauv. J. Chem. Ecol. 17: 343–352.Google Scholar
  62. ——. 1995. Allelopathic potential of an annual weed,Polypogon monspeliensis, in crops in India. Plant Soil 173: 251–257.Google Scholar
  63. Islebe, D. A. 1993. List of flora of the subalpine forest of the Altos Cuchumatanes Mountains, Guatemala. Brenesia 39–40: 131–135.Google Scholar
  64. Jones, E., R. S. Jessop, B. M. Sindal & A. Hoult. 1999. Utilising crop residues to control weeds. Pp. 373–376in A. Bishop, M. Boersma & C. D. Barnes (eds.), Proceedings of 12th Australian Weeds Conference (TWS), Devonport.Google Scholar
  65. Kalita, D., H. Choudhury &S. C. Dey. 1999. Assessment of allelopathic potential of some common upland rice weed species on morpho-physiological properties of rice (Oryza saliva L.) plant. Crop Res. Hisar 17: 41–45.Google Scholar
  66. Kato-Noguchi, H. &T. Ino. 2001. Assessment of allelopathic potential of root exudate of rice seedlings. Biol. Plant. 44: 635–638.Google Scholar
  67. —,S. Kosemura, S. Yamamura, J. Mizutani &K. Hasegawa. 1994a. Allelopathy of oats, I. Assessment of allelopathic potential of extract of oat shoots and identification of an allelochemical. J.Chem. Ecol. 20: 309–314.Google Scholar
  68. —,J. Mizutani &K. Hasegawa. 1994b. Allelopathy of oats, II. Allelochemical effect of L-tryptophan and its concentration in oat root exudates. J. Chem. Ecol. 20: 315–319.Google Scholar
  69. —,S. Kosemura &S. Yamamura. 1998. Allelopathic potential of 5-chloro-6-methoxy-2-benzoxazolinone. Phytochemistry 48: 433–435.Google Scholar
  70. Kawaguchi, S., Y. Takeuchi, M. Ogasawara, K. Yoneyama &M. Konnai. 1997a. Allelopathic potential of rice seed (Oryza saliva L.) on seed germination ofMonochoria vaginalis van plantaginea. J. Weed Sci. Tech. 42: 262–267.Google Scholar
  71. —,K. Yoneyama, T. Yokota, Y. Takeuchi, M. Ogasawara &M. Konnai. 1997b. Effects of aqueous extract of rice plants (Oryza saliva L.) on seed germination and radicle elongation ofMonochoria vaginalis var. plantaginea. Plant Growth Reg. 23: 183–189.Google Scholar
  72. Klun, J. A., C. L. Tipton &T. A. Brindley. 1967. 2,4-Dihydroxy-7-methoxy-l,4-benzoxazin-3-one (DIMBOA), an active agent in the resistance of maize to the European corn borer. J. Econ. Entom. 60: 1529–1533.Google Scholar
  73. Kumar, P., R. W. Gagliardo &W. S. Chilton. 1993. Soil transformation of wheat and corn metabolites MBOA and DIM2BOA into aminophenoxazinones. J. Chem. Ecol. 19: 2453–2461.Google Scholar
  74. Levesque, E. &J. Svoboda. 1997. Germinable seed bank from soils of polar desert stands (Central Ellesmere Island, Canada) and survival of seedlings in controlled conditions. Bot. Zh. 82: 30–45.Google Scholar
  75. Li, H.-H., H. Nishimura, K. Hasegawa &J. Mizutani. 1992. Allelopathy ofSasa cernua. J. Chem. Ecol. 18: 1785–1796.Google Scholar
  76. Lipinska, H. &W. Harkot. 1998. Allelopathic influence of phytotoxins from old roots ofPoa pratensis L. on initial development of sown grasses. Grass. Sci. 1: 159–164.Google Scholar
  77. Liu, D. L. &J. V. Lovett. 1990. Allelopathy in barley: Potential for biological suppression of weeds. FRI Bull. New Zeal. For. Serv. 155: 85–92.Google Scholar
  78. ——. 1993a. Biologically active secondary metabolites of barley, I. Developing techniques and assessing allelopathy in barley. J. Chem. Ecol. 19: 2217–2230.Google Scholar
  79. ——. 1993b. Biologically active secondary metabolites of barley, II. Phytotoxicity of barley allelochemicals. J. Chem. Ecol. 19: 2231–2244.Google Scholar
  80. Martin, V. L., E. L. McCoy, W. A. Dick. 1990. Allelopathy of crop residues: Influences corn seed germination and early growth. Agron. J. 82: 555–560.Google Scholar
  81. McGraw, J. B. &T. A. Day. 1997. Size and characteristics of a natural seed bank in Antarctica. Arct. Alp. Res. 29: 213–216.Google Scholar
  82. Mizianty, M. 1997. Distribution ofDactylis glomerata subsp.slovenica (Poaceae) in Europe. Fragmenta Floristica Geobot. 42: 207–213.Google Scholar
  83. Moyer, J. R. &H. C. Huang. 1997. Effects of aqueous extracts of crop residues on germination and seedling growth of ten weed species. Bot. Bull. Acad. Sin. 38: 131–139.Google Scholar
  84. Murphy, S. D. &L. W. Aarssen. 1995a. Reduced seed set inElytrigia repens caused by allelopathic pollen fromPhleum pratense. Can. J. Bot. 73: 1417–1422.Google Scholar
  85. ——. 1995b. Allelopathic pollen extract fromPhleum pratense L. (Poaceae) reduces germination,in vitro, of pollen of sympatric species. Intl. J. Plant Sci. 156: 425–434.Google Scholar
  86. ——. 1995c. Allelopathic pollen extract fromPhleum pratense L. (Poaceae) reduces seed set in sympatric species. Intl. J. Plant Sci. 156: 435–444.Google Scholar
  87. ——. 1996. Cleistogamy limits reduction in seed set inDanthonia compressa (Poaceae) caused by allelopathic pollen fromPhleum pratense (Poaceae). Ecoscience 3: 205–210.Google Scholar
  88. Mwaja, V. N., J. B. Masiunas &L. A. Weston. 1995. Effects of fertility on biomass, phytotoxicity and allelochemical content of cereal rye. J. Chem. Ecol. 21: 81–97.Google Scholar
  89. Narwal, S. S. &M. K. Sarmah. 1996. Effect of wheat residues and forage crops on the germination and growth of weeds. Allelopathy J. 3: 229–240.Google Scholar
  90. —— &D. P. S. Nandal. 1997. Allelopathic effects of wheat residues on growth and yield of fodder crops. Allelopathy J. 4: 111–120.Google Scholar
  91. Netzly, D. H. &L. G. Butler. 1986. Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Sci. 26: 775–778.Google Scholar
  92. —,J. L. Riopel, G. Ejeta &L. G. Butler. 1988. Germination stimulants of witchweed (Striga asiatica) from hydrophobic root exudate of sorghum (Sorghum bicolor). Weed Sci. 36: 441–446.Google Scholar
  93. Nicoliier, J. F., D. F. Pope &A. C. Thompson. 1983. Biological activity of dhurrin and other compounds of Johnson grass (Sorghum halepense). J. Agric. Food Chem. 31: 744–748.Google Scholar
  94. Nimbal, C. I., C. N. Yerkes, L. A. Weston &S. C. Weller. 1996. Herbicidal activity and site of action of the natural product sorgoleone. Pest. Biochem. Physiol. 54: 73–83.Google Scholar
  95. Oram, R. N. 1996.Secale montanum: A wider role in Australasia? N. Zeal. J. Agric. Res. 39: 629–633.Google Scholar
  96. Overland, L. 1966. The role of allelopathic substances in the “smother crop” barley. Am. J. Bot. 53: 423–432.Google Scholar
  97. Pérez, F. J. &J. Ormeno-Núñez. 1991a. Root exudates of wild oats: Allelopathic effect on spring wheat. Phytochemistry 30: 2199–2202.Google Scholar
  98. ——. 1991b. Difference in hydroxamic acid content in roots and root exudates of wheat (Triticum aestivum L.) and rye (Secale cereale L.): Possible role in allelopathy. J. Chem. Ecol. 17: 1037–1043.Google Scholar
  99. —— &J. Ormeno-Núñez. 1993. Weed growth interference from temperate cereals: The effect of a hydroxamicacids-exuding rye (Secale cereale L.) cultivar. Weed Res. 33: 115–119.Google Scholar
  100. Pillinger, J. M., J. A. Cooper &I. Ridge. 1994. Role of phenolic compounds in the antialgal activity of barley straw. J. Chem. Ecol. 20: 1557–1569.Google Scholar
  101. Piskorz, B. 1998a. Allelopathic effect of barnyard grass (Echinochloa crus-galli L.) on some vegetable crops, I. Effect of aqueous extracts fromEchinochloa crus-galli L. on seed germination of cucumber, tomato and radish. J. Polish Acad. Sci. 452: 153–165.Google Scholar
  102. —. 1998b. Allelopathic effect of barnyard grass (Echinochloa crus-galli L.) on some vegetable crops, II. Effect of aqueous extracts fromEchinochloa crus-galli L. on seedling growth of cucumber, tomato and radish. J. Polish Acad. Sci. 452: 167–183.Google Scholar
  103. Pratley, J. E. 1996. Allelopathy in annual grasses. Pp. 213–214in P. Dowling & R. Medd (eds.), Wild oats, annual ryegrass and vulpia: Proceedings of a workshop held at Duntryleague Country Club, Orange on 26–27 March 1996. Co-operative Research Centre for Week Management Systems, University of Adelaide, Waite Campus, Glen Osmond, South Australia.Google Scholar
  104. Putnam, A. R., J. Defrank &J. P. Barnes. 1983. Exploitation of allelopathy for weed control in annual and perennial cropping systems. J. Chem. Ecol. 9: 1001–1010.Google Scholar
  105. Quader, M., G. Daggard, R. Barrow, S. Walker &M. W. Sutherland. 2001. Allelopathy, DIMBOA production and genetic variability in accessions ofTriticum speltoides. J. Chem. Ecol. 27: 747–760.PubMedGoogle Scholar
  106. Queirolo, C. B., C. S. Andreo, H. M. Niemeyer &H. M. Corcuera. 1983. Inhibition of ATPase from chloroplasts by a hydroxamic acid from the Gramineae. Phytochemistry 22: 2455–2458.Google Scholar
  107. Ramesar-Fortner, N. S., S. G. Aiken &N. G. Dengler. 1995. Phenotypic plasticity in leaves of four species of ArcticFestuca (Poaceae). Can. J. Bot. 73: 1810–1823.Google Scholar
  108. Rasmussen, J. A., A. M. Hejl, F. A. Einhellig &J. A. Thomas. 1992. Sorgoleone from root exudate inhibits mitochondrial functions. J. Chem. Ecol. 18: 197–207.Google Scholar
  109. Rebristaya, O. V. 1997. Flora of the sea coast habitats in the West Siberian Arctic. Bot. Zh. 82: 30–40.Google Scholar
  110. Reed, G. L., W. B. Showers, J. L. Huggans &S. W. Carter. 1972. Improved procedures for mass rearing the European corn borer. J. Econ. Entomol. 65: 1472–1476.Google Scholar
  111. Saxena, A., D. V. Singh &N. L. Joshi. 1996. Autotoxic effects of pearl millet aqueous extracts on seed germination and seedling growth. J. Arid Envir. 33: 255–260.Google Scholar
  112. Schulz, M., A. Friebe, P. Kück, M. Seipel &H. Schnabl. 1994. Allelopathic effects of living quackgrass (Agropyron repens L.): Identification of inhibitory allelochemicals exuded from rhizome borne roots. Angew. Bot. 68: 195–200.Google Scholar
  113. Schumacher, W. J., D. C. Thill &G. A. Lee. 1983. Allelopathic potential of wild oat (Avena fatua) on spring wheat (Triticum aestivum) growth. J. Chem. Ecol. 9: 1235–1245.Google Scholar
  114. Shilling, D. G., R. A. Liebl&A. D. Worsham. 1985. Rye (Secale cereale L.) and wheat (Triticum aestivum L.) mulch: The suppression of certain broadleaved weeds and the isolation and identification of phytotoxins. Pp. 243–271in A. R. Putnam & C. S. Tang (eds.), The chemistry of allelopathy. John Wiley & Sons, New York.Google Scholar
  115. Shirazi, M. A., P. K. Haggerty, C. W. Hendricks &M. Reporter. 1998. The role of thermal regimen in Tundra plant community restoration. Rest. Ecol. 6: 111–117.Google Scholar
  116. Smith, A. E. &L. D. Martin. 1994. Allelopathic characteristics of three cool-season grass species in the forage ecosystem. Agron. J. 86: 243–246.Google Scholar
  117. Souza, De. 1996. Allelopathic effects of rye in the region of “Alto Paranaiba”, Minas Gerais State, Brazil. Ciencia Agrotech. 20: 245–248.Google Scholar
  118. Springer, T. L. 1996. Allelopathic effects on germination and seedling growth of clovers by endophytefree and -infected tall fescue. Crop Sci. 36: 1639–1642.Google Scholar
  119. Steinsiek, J. W., L. Oliver &F. C. Collins. 1982. Allelopathic potential of wheat (Triticum aestivum) straw on selected weed species. Weed Sci. 30: 495–497.Google Scholar
  120. Steltzer, H. &W. D. Bowman. 1998. Differential influence of plant species on soil nitrogen transformations within moist meadow alpine tundra. Ecosystems 1: 464–474.Google Scholar
  121. Stewart, A. V. 1996. Potential value of someBromus species of the section Ceratochloa. New Zeal. J.Agric. Res. 39: 611–618.Google Scholar
  122. Stowe, L. G. 1979. Allelopathy and its influence on the distribution of plants in an Illinois old-field. J. Ecol. 67: 1065–1085.Google Scholar
  123. Strasburger, E., F. Noll, H. Schenck &A. F. W. Schimper. 1994. Parte tercera: Evolución y sistemática. Pp. 852–862in E. Strasburger, F. Noll, H. Schenck & A. F. W. Schimper (eds.), Tratado de botánica. Ed. 8 (in Spanish). Omega, Barcelona.Google Scholar
  124. Sun, H., Z. Zhou &H. Yu. 1997. The vegetation of the Big Bend Gorge of Yalu Tsangpo River, S.E. Tibet, E. Himalayas. Acta Bot. Yunnanica 19: 57–66.Google Scholar
  125. Tripathi, J. S. &R. D. Vaishya. 1997. Allelopathic effects of fresh plant extracts on germination of weed seeds. Ind. J. Weed Sci. 29: 192–193.Google Scholar
  126. Vicol, A. &C. Dobrota. 1994. Lettuce, lambsquarters and country mallow callus culture bioassays in the study of allelopathy. Studia Universitatis Babes-Bolyai Biologia 39: 69–73.Google Scholar
  127. Virtanen, A. I., P. K. Hietala &O. Wahlroos. 1957. Antimicrobial substances in cereals and fodder plants. Arch. Biochem. Biophys. 69: 486–500.PubMedGoogle Scholar
  128. Wanda, H. &H. Lipinska. 1997. Influence of root leachates of some grass and clover species on their seed germination. Pp. 147–154in W. Oleszek (ed.), Theoretical and practical aspects of allelopathy. IUNG, Lublin, Poland.Google Scholar
  129. Wardle, D. A., K. S. Nicholson, M. Ahmed &A. Rahman. 1994. Interference effects of the invasive plantCarduus nutans L. against the nitrogen fixation ability ofTrifolium repens L. Plant Soil 163: 287–297.Google Scholar
  130. —— &A. Rahman. 1996. Use of a comparative approach to identify allelopathic potential and relationship between allelopathy bioassays and “competition” experiments for ten grassland and plant species. J. Chem. Ecol. 22: 933–948.Google Scholar
  131. Watson, L. &M. J. Dallwitz. 1994. The grass genera of the world. Rev. ed. CAB International, Wallingford, England.Google Scholar
  132. Wegener, C. &A. M. Odasz. 1997. Effects of laboratory simulated grazing on biomass of the perennial Arctic grassDupontia fisheri from Svalbard: Evidence of overcompensation. Oikos 79: 496–502.Google Scholar
  133. ——. 1998. Do Svalbard reindeer regulate standing crop in the absence of predators? A test of the “exploitation ecosystem” model. Oecologia 116: 202–206.Google Scholar
  134. Went, F. W., G. Juhren &M. C. Juhren. 1952. Fire and biotic factors affecting germination. Ecology 33: 351–364.Google Scholar
  135. Weston, L. A. &M. A. Czarnota. 2001. Activity and persistence of sorgoleone, a long-chain hydroquinone produced bySorghum bicolor. J. Crop. Prod. 4: 363–377.Google Scholar
  136. —,R. Harmon &S. Mueller. 1989. Allelopathic potential of sorghum-sudangrass hybrid (sudex). J. Chem. Ecol. 15: 1855–1865.Google Scholar
  137. Wiseman, B. R., M. E. Snook, R. L. Wilson &D. J. Isenhour. 1992. Allelochemical content of selected popcorn silks: Effects on growth of corn earworm larvae (Lepidoptera: Noctuidae). J. Econ. Entom. 85: 2500–2504.Google Scholar
  138. Wójcik-Wojtkowiak, D., B. Politycka, M. Schneider &J. Perkowski. 1990. Phenolic substances as allelopathic agents arising during the degradation of rye (Secale cereale) tissues. Plant Soil 124: 143–147.Google Scholar
  139. Wu, H., T. Haig, J. Pratley, D. Lemerle &M. An. 2001. Allelochemicals in wheat (Triticum aestivum L.): Cultivar difference in the exudation of phenolic acids. J. Agric. Food Chem. 49: 3742–3745.PubMedGoogle Scholar
  140. —————. 2002. Biochemical basis for wheat seedling allelopathy on the suppression of annual ryegrass (Lolium rigidum). J. Agric. Food Chem. 50: 4567–4571.PubMedGoogle Scholar
  141. Wu, L., X. Guo &M. A. Harivandi. 1998. Allelopathic effects of phenolic acids detected in buffalograss (Buchloe dactyloides) clippings on growth of annual bluegrass (Poa annud) and buffalograss seedlings. Env. Exp. Bot. 39: 159–167.Google Scholar
  142. Zanokha, L. L. 1995. Classification of meadow communities of the tundra zone in the Taimyr Peninsula: The associationSaxifraga hirculi-Poetum alpigenae. Bot. Zh. 80: 25–35.Google Scholar
  143. Zúñiga, G. E. &L. J. Corcuera. 1986. Effect of gramine in the resistance of barley seedling to the aphidRhopalosiphum padi. Entom. Exp. Appl. 40: 259–262.Google Scholar
  144. Zwain, K. H. Y., I. S. Alsaadawi&H. A. Shahata. 1999. Effect of decomposing wheat residues on growth and biological nitrogen fixation of blue green algae. Allelopathy J. 6: 13–21.Google Scholar

Copyright information

© The New York Botanical Garden 2004

Authors and Affiliations

  • A. M. Sánchez-Moreiras
    • 1
  • O. A. Weiss
    • 1
  • M. J. Reigosa-Roger
    • 1
  1. 1.Department of Plant Biology and Soil ScienceUniversity of VigoVigoSpain

Personalised recommendations