Advertisement

The Botanical Review

, 68:153 | Cite as

Phylogeny, morphology, and biogeography ofChuquiraga, an Andean-Patagonian genus of Asteraceae-Barnadesioideae

  • Cecilia Ezcurra

Abstract

Chuquiraga is a genus of 23 species of evergreen shrubs endemic to South America. It is distributed principally along the Andes from Colombia to Chile and Argentina, and it is especially diversified in the Central Andes and in the deserts and semideserts of southern South America. The genus exhibits a wide array of leaf-morphology types and two different head and floral types apparently related to hummingbird and insect pollination.

In this study, phylogenetic relationships amongChuquiraga species were resolved by parsimony cladistic analysis using morphological characters. The resulting cladogram was used to interpret morphological, ecological, and biogeographical patterns in a historical context. Biotic and abiotic environmental factors hypothesized to have exerted selective pressure on morphological traits of its species were optimized onto the phylogeny to suggest how and when these factors may have affected the evolution and diversification of the genus.

Results suggest an origin of the genus in southern South America, with two major evolutionary radiations, one more northern in the Central and Northern Andes, and the other in the Southern Andes and the North Chilean, Patagonia and Monte Deserts. Pollination by hummingbirds seems to have been an important factor in the origin of the northern clade, affecting floral morphology. Herbivory by vertebrates and increased aridity seem to have been important selective forces in the evolution and diversification of the southern clade, especially affecting leaf morphology. These changes were probably associated with the major elevation of the Andes in late Tertiary and with the hyperaridization and climatic fluctuations of Pleistocene and Holocene times.

Keywords

Botanical Review Leaf Morphology Cladistic Analysis Spinosa Retention Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Resumen

Chuquiraga es un género con 23 especies de arbustos perennifolios endémico de América del Sur. Se distribuye principalmente a lo largo de los Andes desde Colombia hasta Chile y Argentina y está especialmente diversificado en los desiertos y semidesiertos de América del Sur. El género presenta un amplio espectro de tipos de morfología foliar y dos tipos florales y de capítulos aparentemente relacionados con la polinización por colibríes y por insectos.

En este trabajo las relaciones filogenéticas entre las especies deChuquiraga se resolvieron mediante análisis cladístico de parsimonia utilizando caracteres morfológicos. El cladograma resultante se empleó para interpretar patrones morfológicos, ecológicos y biogeográficos de las especies en un contexto histórico. Factures bióticos y abióticos que se han hipotetizado que han ejercido presión selectiva sobre los caracteres morfológicos fueron optimizados sobre la filogenia para sugerir cómo y cuándo podrían haber afectado la evolución y la diversificación del género.

Los resultados obtenidos sugieren un origen del género en el sur de América del Sur, y dos principales radiaciones evolutivas, una más al norte en los Andes Centrales y en los Andes del Norte, y la otra más al sur en los Andes del Sur y en los desiertos del norte de Chile, la Patagonia y el Monte. La polinización por colibríes parece haber sido un factor importante en el origen del clado del norte, afectando la morfología floral. La herbivoría por vertebrados y el incremento en la aridez parecen haber sido fuerzas selectivas importantes en la evolución y diversificación del clado austral, afectando especialmente la morfología foliar. Estos cambios probablemente estuvieron asociados a la elevación máxima de los Andes a fines del Terciario y a la hiperaridización y fiuctuaciones climáticas del Pleistoceno y Holoceno.

Literature Cited

  1. Arroyo, M. T. K., L. Cavieres, A. Peñaloza, M. Riveros &A. M. Faggi. 1996. Relaciones fitogeográficas y patrones regionales de riqueza de especies en la flora del bosque lluvioso templado de Sudamérica. Pp. 71–99in J. J. Armesto, C. Villagrán & M. T. K. Arroyo (eds.), Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago.Google Scholar
  2. Baumann, F. 1988. Geographische Verbreitung und ökologie südamerikanischer hochgebirgspflanzen. Phys. Geogr. (Zurich) 28: 1–190.Google Scholar
  3. Bleiweiss, R., J. A. W. Kirsch &J. C. Matheus. 1994. DNA-DNA hybridization evidence for subfamily structure among hummingbirds. Auk 111: 8–19.Google Scholar
  4. Böcher, T. W. 1979. Xeromorphic leaf types, evolutionary strategies and tentative semophyletic sequences. Biol. Skr. 22: 1–77.Google Scholar
  5. Bohm, B. A. &T. F. Stuessy. 1995. Flavonoid chemistry of Barnadesioideae (Asteraceae). Syst. Bot. 20: 22–27.CrossRefGoogle Scholar
  6. Bremer, K. 1994. Asteraceae: Cladistics and classification. Timber Press, Portland, OR.Google Scholar
  7. — &R. K. Jansen. 1992. A new subfamily of the Asteraceae. Ann. Missouri Bot. Gard. 79: 414–415.CrossRefGoogle Scholar
  8. Brooks, D. R. &D. A. McLennan. 1991. Phylogeny, ecology, and behavior: A research program in comparative biology. Univ. of Chicago Press, Chicago.Google Scholar
  9. Bucher, E. H. 1987. Herbivory in arid and semiarid regions of Argentina. Revista Chilena Hist. Nat. 60: 265–273.Google Scholar
  10. Cabrera, A. L. 1959. Revisión del géneroDasyphyllum (Compositae). Revista Mus. La Plata, Secc. Bot., n.s., 9: 21–100.Google Scholar
  11. — 1977. Mutisieae—Systematic review. Pp. 1039–1066in V. H. Heywood, J. B. Harborne & B. L. Turner (eds.), The biology and chemistry of the Compositae. 2 vols. Academic Press, London.Google Scholar
  12. — &A. Willink. 1980. Biogeografía de América Latina. O.E.A. Serie de Biología, Monografía 13. Ed. 2, corr. General Secretariat of the Organization of American States, Washington, DC.Google Scholar
  13. Carpenter, F. L. 1976. Ecology and evolution of an Andean hummingbird (Oreotrochilus estella). Univ. Calif. Publ. Zool., 106. Univ. of California Press, Berkeley.Google Scholar
  14. Chesser, T. R. 2000. Evolution in the High Andes: The phylogenetics ofMuscisaxicola ground-tyrants. Molec. Phylogenetics & Evol. 15: 369–380.CrossRefGoogle Scholar
  15. Coughenour, M. B. 1985. Graminoid responses to grazing by large herbivores: Adaptations, exaptations, and interacting processes. Ann. Missouri Bot. Gard. 72: 852–863.CrossRefGoogle Scholar
  16. Cuatrecasas, J. 1986. Speciation and radiation of the Espeletiinae in the Andes. Pp. 267–303in F. Vuilleumier & M. Monasterio (eds.), High altitude tropical biogeography. Oxford Univ. Press, Oxford.Google Scholar
  17. De Vore, M. L. &T. F. Stuessy. 1995. The place and time of origin of the Asteraceae, with additional comments on the Calyceraceae and Goodeniaceae. Pp. 23–40in D. J. N. Hind, C. Jeffrey & G. V. Pope (eds.), Advances in Compositae systematics. Royal Botanic Gardens, Kew.Google Scholar
  18. Eggleton, P. &R. I. Vane-Wright. 1994. Some principles of phylogenetics and their implications for comparative biology. Pp. 345–366in P. Eggleton & R. I. Vane-Wright (eds.), Phylogenetics and ecology. Linnean Soc. Symp. ser., 17. Academic Press, London.Google Scholar
  19. Espenshade, E. B., Jr. (ed.). 1978. Goode’s world atlas. Ed. 15. Rand McNally, Chicago.Google Scholar
  20. Espinosa, R. 1933. Ökologischen Studien über Kordillerenpflanzen. Bot. Jahrb. Engler 65: 120–212.Google Scholar
  21. Ezcurra, C. 1985. Revisión del géneroChuquiraga (Compositae-Mutisieae). Darwiniana 26: 219–284.Google Scholar
  22. — &J. V. Crisci. 1987. Relaciones de similitud entre las especies del géneroChuquiraga (Compositae-Mutisieae): Un análisis numérico. Darwiniana 28: 219–229.Google Scholar
  23. —,A. Ruggiero &J. V. Crisci. 1997. Phylogenyof Chuquiraga sect.Acanthophyllae (Asteraceae-Barnadesioideae), and the evolution of its leaf morphology in relation to climate. Syst. Bot. 22: 151–163.CrossRefGoogle Scholar
  24. Farris, J. S. 1988: Hennig86 user’s manual. Port Jefferson Station, NY.Google Scholar
  25. — 1989. The retention index and the rescaled consistency index. Cladistics 5: 417–419.CrossRefGoogle Scholar
  26. Feduccia, A. 1996. The origin and evolution of birds. Yale Univ. Press, New Haven, CT.Google Scholar
  27. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  28. Ferreyra, M., S. Clayton &C. Ezcurra. 1998. La flora altoandina de los sectores este y el oeste del Parque Nacional Nahuel Huapi, Argentina. Darwiniana 36 (1–4): 65–79.Google Scholar
  29. Ferreyra, R. 1995. Flora of Peru: Asteraceae, Part VI. Fieldiana, Bot. 35: 1–101.Google Scholar
  30. Fjeldså, J. &N. Krabbe. 1990. Birds of the high Andes. Zoological Museum, Univ. of Copenhagen, Copenhagen; Apollo Books, Svendborg, Denmark.Google Scholar
  31. Franklin, W. L. 1982. Biology, ecology and the relationships to man of the South American camelids. Pp. 457–489in M. A. Mares & H. H. Genoways (eds.), Mammalian biology in South America. Pymatuning Laboratory of Ecology, Univ. of Pittsburgh, Special Publication 6.Google Scholar
  32. Funk, V. A., H. Robinson, G. S. McKee &J. F. Pruski. 1995. Neotropical montane Compositae with an emphasis on the Andes. Pp. 451–471in S. P. Churchill, H. Balslev, E. Forero & J. L. Luteyn (eds.), Biodiversity and conservation of neotropical montane forests. New York Bot. Gard., Bronx.Google Scholar
  33. Gentry, A. H. 1982. Neotropical floristic diversity: Phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of Andean orogeny? Ann. Missouri Bot. Gard. 69: 557–593.CrossRefGoogle Scholar
  34. Granda P., A. 1997. Una nueva especie deChuquiraga (Asteraceae-Mutisieae) del Perú. Kurtziana 25: 151–156.Google Scholar
  35. Harling, G. 1991. 190(10). Compositae-Mutisieae. Flora of Ecuador, 42. Univ. of Göteborg, Dept. of Systematic Botany, Copenhagen.Google Scholar
  36. Hill, R. S. 1998. Fossil evidence for the onset of xeromorphy and scleromorphy in Australian Proteaceae. Austral. Syst. Bot. 11: 9–40.Google Scholar
  37. Hinojosa, L. F. &C. Villagrán. 1997. Historia de los bosques del sur de Sudamérica, I: Antecedentes paleobotánicos, geológicos y climáticos del Terciario del cono sur de América. Revista Chilena Hist. Nat. 70: 225–239.Google Scholar
  38. Hoffmann, J. A. J. 1975. Atlas climático de América del Sur: Mapas de temperatura y precipitaciones medias. WMO, UNESCO, Geneva.Google Scholar
  39. Hooghiemstra, H. &A. M. Cleef. 1995. Pleistocene climatic change and environmental and generic dynamics in the North Andean montane forest and páramo. Pp. 35–49in S. P. Churchill, H. Balslev, E. Forero & J. L. Luteyn (eds.), Biodiversity and conservation of neotropical montane forests. New York Bot. Gard., Bronx.Google Scholar
  40. Lauenroth, W. K. 1998. Guanacos, spiny shrubs, and the evolutionary history of grazing in the Patagonian steppe. Ecol. Austral 8: 21–215.Google Scholar
  41. Maddison, W. P. &D. R. Maddison. 1992. MacClade: Interactive analysis of phylogeny and character evolution, version 3.0. Sinauer Assoc., Sunderland, MA.Google Scholar
  42. —,M. J. Donoghue &D. R. Maddison. 1984. Outgroup analysis and parsimony. Syst. Zool. 33: 63–104.CrossRefGoogle Scholar
  43. Obeso, J. R. 1997. The induction of spinescence in European holly leaves by browsing ungulates. Pl. Ecol. 129: 149–156.CrossRefGoogle Scholar
  44. Parkhurst, D. F. &O. L. Loucks. 1972. Optimal leaf size in relation to environment. J. Ecol. 60: 505–537.CrossRefGoogle Scholar
  45. Parrish, J. T. 1987. Global paleogeography and paleoclimate of the Late Cretaceous and Early Tertiary. Pp. 51–73in E. M. Friis, W. G. Chaloner & P. R. Crane (eds.), The origin of angiosperms and their biological consequences. Cambridge Univ. Press, Cambridge.Google Scholar
  46. Pascual, R. 1984. Late Tertiary mammals of southern South America as indicators of climatic deterioration. Pp. 1–30in J. Rabassa (ed.), Quaternary of South America and the Antarctic Peninsula. A. A. Balkema, Rotterdam.Google Scholar
  47. — &E. Ortiz J. 1990. Evolving climates and mammal faunas in Cenozoic South America. J. Human Evol. 19: 23–60.CrossRefGoogle Scholar
  48. —,M. G. Vucetich, G. J. Scillato-Yané &M. Bond. 1985. Main pathways of mammalian diversification in South America. Pp. 219–239in F. G. Stehli & S. D. Webb (eds.), The great American biotic interchange. Plenum, New York.Google Scholar
  49. Pelliza-Sbriller, A., N. A. Bonino, G. Bonvissuto &J. N. Amaya. 1995. Composición botánica de la dieta de herbivoros silvestres y domésticos en el área de Pilcaniyeu (Río Negro). I.D.I.A. 429-432: 63–73.Google Scholar
  50. Raven, P. H. &D. I. Axelrod. 1974. Angiosperm biogeography and past continental movements. Ann. Missouri Bot. Gard. 61: 539–673.CrossRefGoogle Scholar
  51. Redmann, R. E. 1985. Adaptation of grasses to water stress—Leaf rolling and stomate distribution. Ann. Missouri Bot. Gard. 72: 833–842.CrossRefGoogle Scholar
  52. Reig, O. R. 1986. Diversity patterns and differentiation of high Andean rodents. Pp. 404–440in F. Vuilleumier & M. Monasterio (eds.), High altitude tropical biogeography. Oxford Univ. Press, Oxford.Google Scholar
  53. Robinson, H. 1987. Some suggestions regarding the significance of chloroplast DNA variation in the Asteraceae. Phytologia 63: 316–324.Google Scholar
  54. Ruse, M. 1979. Falsifiability, consilience, and systematics. Syst. Zool. 28: 530–536.CrossRefGoogle Scholar
  55. Sagástegui A., A. Sánchez V. &I. Sánchez V. 1991. Una nueva especie deChuquiraga del norte de Perú. Arnaldoa 1: 1–4.Google Scholar
  56. Simpson, B. B. 1975. Pleistocene changes in the flora of the high tropical Andes. Paleobiology 1: 273–294.Google Scholar
  57. — 1986. Speciation and specialization ofPolylepis in the Andes. Pp. 304–316in F. Vuilleumier & M. Monasterio (eds.), High altitude tropical biogeography. Oxford Univ. Press, Oxford.Google Scholar
  58. — &J. L. Neff. 1985. Plants, their pollinating bees, and the Great American Interchange. Pp. 427–452in F. G. Stehli & S. D. Webb (eds.), The great American biotic interchange. Plenum, New York.Google Scholar
  59. — &C. A. Todzia. 1990. Patterns and processes in the development of the high Andean flora. Amer. J. Bot. 77: 1419–1432.CrossRefGoogle Scholar
  60. Solbrig, O. T. 1976. The origin and floristic affinities of the South American temperate desert and semidesert regions. Pp. 7–49in D. W. Goodall (ed.), Evolution of desert biota. Univ. of Texas Press, Austin.Google Scholar
  61. Somlo, R. (ed.). 1997. Atlas dietario de herbívoros patagónicos. PRODESAR, INTA, GTZ, San Carlos de Bariloche, Argentina.Google Scholar
  62. Stebbins, G. L. 1981. Coevolution of grasses and herbivores. Ann. Missouri Bot. Gard. 68: 75–86.CrossRefGoogle Scholar
  63. Stuessy, T. F., T. Sang &M. L. DeVore. 1996. Phylogeny and biogeography of the subfamily Barnadesioideae with implications for early evolution of the Compositae. Pp. 463–490in D. J. N. Hind & H. J. Beentje (eds.), Proceedings of the International Compositae Conference, Kew, 1994. Vol. 1. Compositae: Systematics. Royal Botanic Gardens, Kew.Google Scholar
  64. Swofford, D. L. 1991. PAUP: Phylogenetic analysis using parsimony, Version 3.0. Illinois Natural History Survey, Champaign.Google Scholar
  65. Taylor, D. W. 1991. Paleobiogeographic relationships of Andean angiosperms of Cretaceous to Pliocene age. Palaeogeogr. Palaeoclimatol. Palaeoecol. 88: 69–84.CrossRefGoogle Scholar
  66. Thiele, K. 1994. The holy grail of the perfect character: the cladistic treatment of morphometric data. Cladistics 9: 275–304.CrossRefGoogle Scholar
  67. Ulloa U., C. &P. M. Jørgensen. 1993. Árboles y arbustos de los Andes del Ecuador. AAU Reports, 30. Aarhus Univ. Press, Aarhus, Denmark.Google Scholar
  68. Urtubey, E. &T. E. Stuessy. 2001. Morphological phylogenetic relationships in Barnadesioideae (Asteraceae) revisited. Taxon 50: 1043–1066.CrossRefGoogle Scholar
  69. Villagrán, C., M. T. Kalin A. &C. Marticorena. 1983. Efectos de la desertización en la distribución de la flora andina de Chile. Revista Chilena Hist. Nat. 56: 137–157.Google Scholar
  70. Webb, D. S. 1978. A history of savanna vertebrates in the New World, II: South America and the great interchange. Ann. Rev. Ecol. Syst. 9: 393–426.CrossRefGoogle Scholar
  71. — 1985. Late Cenozoic mammal dispersals between the Americas. Pp. 357–386in F. G. Stehli & S. D. Webb (eds.), The great American biotic interchange. Plenum, New York.Google Scholar
  72. Wheeler, J. C. 1995. Evolution and present situation of the South American Camelidae. Biol. J. Linn. Soc. 54: 271–295.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2002

Authors and Affiliations

  • Cecilia Ezcurra
    • 1
  1. 1.Departamento de Botánica Centra Regional Universitario BarilocheUniversidad Nacional del ComahueS. C. de Bariloche, Río NegroArgentina

Personalised recommendations