Advertisement

Journal of Coastal Conservation

, Volume 8, Issue 1, pp 97–102 | Cite as

Implications of mangrove dynamics for private and use in bragança, north Brazil: a case study

  • Lara RubénEmail author
  • Szlafsztein Claudio
  • Cohen Marcelo
  • Berger Uta
  • Glaser Marion

Abstract

This work analyses effects of recent variations in the tidal inundation frequency in a mangrove ecosystem in the Bragança peninsula, North Brazil, and its implications for land occupation and use. Field data, time series of remote sensing images and local legislation were analysed focusing on the potential socio-economic impact of a changing environmental setting due to a rise in relative sea level. In the investigated period (1972–1997), vegetation changes along the coastline indicate net losses of mangrove coverage. In the central part of the peninsula, a topographically higher herbaceous plain constituting part of a farm presents an active progression of mangrove forest into an area previously dominated by grasses and herbs. This area measured 8.8 km2 in 1972 but was gradually reduced to 5.6 km2 in 1997, while progressively replaced by a monospecific stand of the black mangrove,Avicennia germinans. A linear extrapolation indicates that the elevated plain may be completely covered by mangrove by 2035. Current Brazilian legislation prohibits the extraction of mangrove trees without an officially approved management plan. Thus, the usable area of the farm has suffered a reduction by ca. 36% over 25 yr and we predict that is could be entirely replaced by mangroves in the next 35 yr. In this case study, legislation and ecosystem characteristics are analysed and a management plan discussed which could represent income alternatives for affected resource users at the local and regional level.

Keywords

Avicennia germinans Legislation Sea-level rise Wetland 

Abbreviation

GPS

Global Positioning System

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anon, 1988.Constituçoes do Brasil e do Pará. CEJUP, Belém, BR.Google Scholar
  2. Anon. 1990.Lei organica do Municipio de Bragança. Camara Municipal de Bragança. CEJUP, Belém, BR.Google Scholar
  3. Anon. 1992.Coletânea de Legislação Federal do Meio Ambiente. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), Brasilia, BR.Google Scholar
  4. Anon. 2000a.Resultados preliminares do censo de população 2000. IBGE, Brasilia, BR.Google Scholar
  5. Anon. 2000b.Assembléia legislativa do Estado do Pará. Bases de leis. www.prodepa.gov.br-alepaGoogle Scholar
  6. Adler, F.R. 1996. A model of self-thinning through local competition.Proc. Natl. Acad. Sci. USA 93: 9980–9984.CrossRefGoogle Scholar
  7. Aubrey, D.G., Emery, K.O. & Uchupi, E. 1988. Changing coastal levels of South America and the Caribbean region from tide-gauge records.Tectonophysics 154: 269–284.CrossRefGoogle Scholar
  8. Baker, W.L. 1992. Effects of settlement and fire suppression on landscape structure.Ecology 73: 1879–1887.CrossRefGoogle Scholar
  9. Bart, J. 1995. Acceptance criteria for using individual-based models to make management decisions.Ecol. Appl. 5: 411–420.CrossRefGoogle Scholar
  10. Berger, U. & Hildenbrandt, H. 2000. A new approach to spatially explicit modelling of forest dynamics: spacing, ageing and neighbourghood competition of mangrovet trees.Ecol. Model. 132: 287–302.CrossRefGoogle Scholar
  11. Berger, U., Glaser, M., Koch, B., Krause, G., Lara, R.J., Saint-Paul, U., Schories, D. & Wolff, M. 1999. MADAM— the approach of an integrated project on mangrove dynamics and management.J. Coastal Conserv. 5: 125–134.CrossRefGoogle Scholar
  12. Boorman, L.A. 2000. The functional role of salt marshes in linking land and sea. In: Sherwood, B. (ed.)British saltmarshes. Linnean Society Special Publication, London, UK.Google Scholar
  13. Chapman, V.J. 1960.Salt marshes and salt deserts of the World. Interscience Publishers, New York, NY.Google Scholar
  14. Cohen, M.C.L., Lara, R.J., Ramos, J.F.F. & Dittmar, T. 1999. Factors influencing the variability of magnesium, calcium and potassium in waters of a mangrove creek in Bragança. North Brazil.Mangr. Salt Marsh. 3: 9–15.CrossRefGoogle Scholar
  15. Franzinelli, E. 1982. Contribuição à geologia da costa do Estado do pará (entre a baia de Curaça e Maiau). In: Suguio, K., De Meis, M.R.M. & Tessler, M.G. (eds.)Atlas IV Simpósio do Quaternario no Brasil, pp. 305–322, Rio do Janeiro, BR.Google Scholar
  16. Gornitz, V. 1991. Global coastal hazards from future sea-level rise.Palaeogeogr. Palaeoclimatol. Palaeoecol. 89: 379–398.CrossRefGoogle Scholar
  17. Guo, Q. & Rundel, P.W. 1998. Self-thinning in early postfire chaparral succession: mechanisms, implications, and a combined approach.Ecology 79: 579–586.CrossRefGoogle Scholar
  18. Hanson, K. & Maul, G. 1989. Analysis of the historical meteorological record at Key West, Florida (1851–1986) for evidence of trace gas induced climate change. In: Maul, G. (ed.)Implication of climatic changes in the wider Caribbean region. UNEP/IOC Regional Task Team Report, pp. 63–71.Google Scholar
  19. Kjerve, B. & Lacerda, L.D. 1993. Mangroves of Brazil. In: Lacerda, L.D. (ed.)Mangrove ecosystems technical reports, ITTO TS-13, 2: 245–272.Google Scholar
  20. Leme Machado, P. 1993. Proteção legal: Manguezaise dunas. Universidade Aberta do Nordeste (S.L.). No. 9, p. 7.Google Scholar
  21. Londsdale, W.M. 1990. The self-thinning rule: dead or alive?Ecology 71: 1373–1388.CrossRefGoogle Scholar
  22. Londsdale, W.M. & Watkinson, A.R. 1982. Light and self-thinning.New Phytol. 90: 431–435.CrossRefGoogle Scholar
  23. Meirelles, H.L. 1993.Direito Municipal Brasileiro. Revista dos Tribunais, 6ta Edição.Google Scholar
  24. Mesquita, A.R. & Harari, J. 1983.Tides and tide gauges of Ubantuba and Cananéia, p. 120. Relatório Instituto Oceanográfico. Universidade de São Paulo, BR.Google Scholar
  25. Mesquita, A.R. & Leite, J.B.A. 1985.Sobre a variabilidade do nível médio do mar na costa sudeste do Brasil. I Encontro Regional de Geofisica, São José dos Campos, pp. 27–29.Google Scholar
  26. Muehe, D. & Neves, C.F. 1995. The implications of sea-level rise on the Brazilian coast: a preliminary assessment.J. Coastal Res. 14: 54–78.Google Scholar
  27. Nittrouer, C.A., Kuehl, S.A., Rhine, J.M., Figueiredo, A.G., Faria, L.E.C., Dias, G.T.M., Silva, M.A.M., Allison, M.A., Pacioni, T.D., Segall, M.P., Underkoffler, E.C. & Borges, H.V. 1991. Sedimentology and stratigraphy of the Amazon continental shelf.Oceanography 25: 33–38.Google Scholar
  28. O'Callaghan, E. 1996.Landuse. The interaction of economics, ecology and hydrology. Chapman & Hall, London, UK.Google Scholar
  29. Pirazolli, P.A. 1986. Secular trends of relative sea levels (RSL) changes indicated by tide-gauge records.J. Coastal Res. 1: 1–26.Google Scholar
  30. Proust, M.T., Lintier, M. & Barthes, B. 1988.Evolution cotière en Guyane Fraçaise: la zone de Sinnamary. Congresso Brasileiro de Geologia e 7 Congresso Latinoamericano de Geologia, Abstracts, pp. 406–407. Belém, BR.Google Scholar
  31. Quang, V.C. 1994. A tree survival equation and diameter growth model for loblolly pine based on the self-thinning rule.J. Appl. Ecol. 31: 693–698.CrossRefGoogle Scholar
  32. Schwendenman, L. 1998.Tidal and seasonal variations of soil and water properties in a Brazilian mangrove ecosystem. M. Sc. Thesis, University of Karlsruhe, Resources Engineering Programme, Karlsruhe, DE.Google Scholar
  33. Silva, G.N. 1992.Variação do nível médio do mar: Causas, consequências e metodologia de análise. M. Sc. Thesis. Programa de Engenharia Oceânica, COOPE. Universidade Federal do Rio de Janeiro, BR.Google Scholar
  34. Silva, G.N. & Neves, C.F. 1991. Variação do nível médio do mar na Ilha Fiscal entre 1965–1986. Anais IX Simpósio Brasileiro de Recursos Hídricos e 5. Simpósio Brasileiro de Hidráulica e Recursos Hídricos Rio de Janeiro.Brazilian Water Resources Association (ABRH) 3: 568–577.Google Scholar
  35. Szlafsztein, C.F., Lara, R.J. & Cohen, M.C.L. 2000. Coastal management: some studies of the past and present of the Bragança region (Pará, Brazil). The MADAM project.J. Int. Environ. Creation 2: 132–139.Google Scholar
  36. Titus, J.G. & Narayanan, V.K. 1995.The probability of sealevelrise. United States Environmental Protection Agency, Washington, DC.Google Scholar
  37. Twilley, R.R., Rivera-Monroy, V.H., Chen, R. & Botero, L. 1999. Adapting an ecological mangrove model to simulate trajectories in restoration ecology.Mar. Pol. Bull. 37: 404–419.CrossRefGoogle Scholar

Copyright information

© EUCC 2002

Authors and Affiliations

  • Lara Rubén
    • 1
    Email author
  • Szlafsztein Claudio
    • 2
  • Cohen Marcelo
    • 2
  • Berger Uta
    • 1
  • Glaser Marion
    • 1
  1. 1.Zentrum für Marine TropenökologieBremenGermany
  2. 2.Laboratorio de Dinámica CosteiraUniversidade Federal do ParáBelémBarzil

Personalised recommendations