Skip to main content
Log in

Scale-aware shape manipulation

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

A novel representation of a triangular mesh surface using a set of scale-invariant measures is proposed. The measures consist of angles of the triangles (triangle angles) and dihedral angles along the edges (edge angles) which are scale and rigidity independent. The vertex coordinates for a mesh give its scale-invariant measures, unique up to scale, rotation, and translation. Based on the representation of mesh using scale-invariant measures, a two-step iterative deformation algorithm is proposed, which can arbitrarily edit the mesh through simple handles interaction. The algorithm can explicitly preserve the local geometric details as much as possible in different scales even under severe editing operations including rotation, scaling, and shearing. The efficiency and robustness of the proposed algorithm are demonstrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Au, O.K.C., Tai, C.L., Liu, L.G., et al., 2006. Dual Laplacian editing for meshes. IEEE Trans. Visual. Comput. Graph., 12(3):386–395. [doi:10.1109/TVCG.2006.47]

    Article  Google Scholar 

  • Bao, Y.F., Guo, X.H., Qin, H., 2005. Physically based morphing of point-sampled surfaces. Comput. Anim. Virt. Worlds, 16(3–4):509–518. [doi:10.1002/cav.100]

    Article  Google Scholar 

  • Botsch, M., Kobbelt, L., 2004. An intuitive framework for real-time freeform modeling. ACM Trans. Graph., 23(3):630–634. [doi:10.1145/1015706.1015772]

    Article  Google Scholar 

  • Botsch, M., Sorkine, O., 2008. On linear variational surface deformation methods. IEEE Trans. Visual. Comput. Graph., 14(1):213–230. [doi:10.1109/TVCG.2007.1054]

    Article  Google Scholar 

  • Botsch, M., Pauly, M., Gross, M.H., et al., 2006. PriMo: coupled prisms for intuitive surface modeling. Proc. Symp. on Geometry Processing, p.11–20.

    Google Scholar 

  • Chao, I., Pinkall, U., Sanan, P., et al., 2010. A simple geometric model for elastic deformations. ACM Trans. Graph., 29(4):38:1–38:6. [doi:10.1145/1778765.1778775]

    Article  Google Scholar 

  • Chen, R.J., Weber, O., Keren, D., et al., 2013. Planar shape interpolation with bounded distortion. ACM Trans. Graph., 32(4), Article 108. [doi:10.1145/2461912.2461983]

    Google Scholar 

  • Crane, K., Pinkall, U., Schröber, P., 2011. Spin transformations of discrete surfaces. ACM Trans. Graph., 30(4), Article 104. [doi:10.1145/2010324.1964999]

    Google Scholar 

  • Fröhlich, S., Botsch, M., 2011. Example-driven deformations based on discrete shells. Comput. Graph. Forum, 30(8):2246–2257. [doi:10.1111/j.1467-8659.2011.01974.x]

    Article  Google Scholar 

  • Gain, J., Bechmann, D., 2008. A survey of spatial deformation from a user-centered perspective. ACM Trans. Graph., 27(4), Article 107. [doi:10.1145/1409625.1409629]

    Google Scholar 

  • Gao, L., Zhang, G.X., Lai, Y.K., 2012. Lp shape deformation. Sci. China Inform. Sci., 55(5):983–993. [doi:10.1007/s11432-012-4574-y]

    Article  MathSciNet  Google Scholar 

  • Grinspun, E., Hirani, A.N., Desbrun, M., et al., 2003. Discrete shells. Proc. ACM SIGGRAPH/Eurographics Symp. on Computer Animation, p.62–67.

    Google Scholar 

  • Hu, S.M., Li, C.F., Zhang, H., 2004. Actual morphing: a physics-based approach to blending. Proc. 9th ACM Symp. on Solid Modeling and Applications, p.309–314.

    Google Scholar 

  • Igarashi, T., Moscovich, T., Hughes, J.F., 2005. As-rigidas-possible shape manipulation. ACM Trans. Graph., 24(3):1134–1141. [doi:10.1145/1073204.1073323]

    Article  Google Scholar 

  • Jacobson, A., Baran, I., Popović, J., et al., 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph., 30(4), Article 78. [doi:10.1145/2010324.1964973]

    Google Scholar 

  • Kircher, S., Garland, M., 2008. Free-form motion processing. ACM Trans. Graph., 27(2), Article 12. [doi:10.1145/1356682.1356685]

    Google Scholar 

  • Kobbelt, L., Campagna, S., Vorsatz, J., et al., 1998. Interactive multi-resolution modeling on arbitrary meshes. Proc. 25th Annual Conf. on Computer Graphics and Interactive Techniques, p.105–114. [doi:10. 1145/280814.280831]

    Google Scholar 

  • Levi, Z., Levin, D., 2014. Shape deformation via interior RBF. IEEE Trans. Visual. Comput. Graph., 20(7):1062–1075. [doi:10.1109/TVCG.2013.255]

    Article  Google Scholar 

  • Lipman, Y., 2012. Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph., 31(4), Article 108. [doi:10.1145/2185520.2185604]

    Google Scholar 

  • Lipman, Y., Sorkine, O., Levin, D., et al., 2005. Linear rotation-invariant coordinates for meshes. ACM Trans. Graph., 24(3):479–487. [doi:10.1145/1073204.1073217]

    Article  Google Scholar 

  • Lipman, Y., Levin, D., Cohen-Or, D., 2008. Green coordinates. ACM Trans. Graph., 27(3), Article 78. [doi:10.1145/1360612.1360677]

    Google Scholar 

  • Milliron, T., Jensen, R.J., Barzel, R., et al., 2002. A framework for geometric warps and deformations. ACM Trans. Graph., 21(1):20–51. [doi:10.1145/504789.504791]

    Article  Google Scholar 

  • Paries, N., Degener, P., Klein, R., 2007. Simple and efficient mesh editing with consistent local frames. Proc. 15th Pacific Conf. on Computer Graphics and Applications, p.461–464. [doi:10.1109/PG.2007.43]

    Google Scholar 

  • Sheffer, A., Kraevoy, V., 2004. Pyramid coordinates for morphing and deformation. Proc. 2nd Int. Symp. on 3D Data Processing, Visualization and Transmission, p.68–75. [doi:10.1109/3DPVT.2004.99]

    Google Scholar 

  • Sorkine, O., Alexa, M., 2007. As-rigid-as-possible surface modeling. Symp. on Geometry Processing, p.109–116.

    Google Scholar 

  • Sorkine, O., Cohen-Or, D., Lipman, Y., et al., 2004. Laplacian surface editing. Proc. Eurographics/ACM SIGGRAPH Symp. on Geometry Processing, p.175–184. [doi:10.1145/1057432.1057456]

    Google Scholar 

  • Wang, Y., Liu, B., Tong, Y., 2012. Linear surface reconstruction from discrete fundamental forms on triangle meshes. Comput. Graph. Forum, 31(8):2277–2287. [doi:10.1111/j.1467-8659.2012.03153.x]

    Article  MathSciNet  Google Scholar 

  • Weber, O., Gotsman, C., 2010. Controllable conformal maps for shape deformation and interpolation. ACM Trans. Graph., 29(4), Article 78. [doi:10.1145/1778765.1778815]

    Google Scholar 

  • Winkler, T., Drieseberg, J., Alexa, M., et al., 2010. Multiscale geometry interpolation. Comput. Graph. Forum, 29(2):309–318. [doi:10.1111/j.1467-8659.2009.01600.x]

    Article  Google Scholar 

  • Yu, Y.Z., Zhou, K., Xu, D., et al., 2004. Mesh editing with Poisson-based gradient field manipulation. ACM Trans. Graph., 23(3):644–651. [doi:10.1145/1015706.1015774]

    Article  Google Scholar 

  • Zhang, M., Zeng, W., Xin, S.Q., et al., 2012. Stable geodesic surface signatures. Tsinghua Sci. Technol., 17(4):471–480. [doi:10.1109/TST.2012.6297593]

    Article  Google Scholar 

  • Zorin, D., Schröber, P., Sweldens, W., 1997. Interactive multiresolution mesh editing. Proc. 24th Annual Conf. on Computer Graphics and Interactive Techniques, p.259–268. [doi:10.1145/258734.258863]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Liu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61222206) and the One Hundred Talent Project of the Chinese Academy of Sciences, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wang, Wm., Liu, Xp. et al. Scale-aware shape manipulation. J. Zhejiang Univ. - Sci. C 15, 764–775 (2014). https://doi.org/10.1631/jzus.C1400122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1400122

Key words

CLC number

Navigation