Skip to main content
Log in

Fuzzy cost-profit tradeoff model for locating a vehicle inspection station considering regional constraints

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Facility location allocation (FLA) is one of the important issues in the logistics and transportation fields. In practice, since customer demands, allocations, and even locations of customers and facilities are usually changing, the FLA problem features uncertainty. To account for this uncertainty, some researchers have addressed the fuzzy profit and cost issues of FLA. However, a decision-maker needs to reach a specific profit, minimizing the cost to target customers. To handle this issue it is essential to propose an effective fuzzy cost-profit tradeoff approach of FLA. Moreover, some regional constraints can greatly influence FLA. By taking a vehicle inspection station as a typical automotive service enterprise example, and combined with the credibility measure of fuzzy set theory, this work presents new fuzzy cost-profit tradeoff FLA models with regional constraints. A hybrid algorithm integrating fuzzy simulation and genetic algorithms (GA) is proposed to solve the proposed models. Some numerical examples are given to illustrate the proposed models and the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ani, O.B., Xu, H., Shen, Y.P., et al., 2013. Modeling and multiobjective optimization of traction performance for autonomous wheeled mobile robot in rough terrain. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(1):11–29. [doi:10.1631/jzus.C12a0200]

    Article  Google Scholar 

  • Arabani, B., Farahani, R.Z., 2012. Facility location dynamics: an overview of classifications and applications. Comput. Ind. Eng., 62(1):408–420. [doi:10.1016/j.cie.2011.09.018]

    Article  Google Scholar 

  • Arish, S., Amiri, S., Noori, K., 2014. FICA: fuzzy imperialist competitive algorithm. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(5):363–371. [doi:10.1631/jzus.C1300088]

    Article  Google Scholar 

  • Arostegui, M.A.Jr., Kadipasaoglu, S.N., Khumawala, B.M., 2006. An empirical comparison of tabu search, simulated annealing, and genetic algorithms for facilities location problems. Int. J. Prod. Econ., 103(2):742–754. [doi:10.1016/j.ijpe.2005.08.010]

    Article  Google Scholar 

  • Badri, M.A., 1999. Combining the analytic hierarchy process and goal programming for global facility location-allocation problem. Int. J. Prod. Econ., 62(3):237–248. [doi:10.1016/S0925-5273(98)00249-7]

    Article  Google Scholar 

  • Church, R., ReVelle, C., 1974. The maximal covering location problem. Papers Reg. Sci. Assoc., 32(1):101–118. [doi:10.1007/BF01942293]

    Article  Google Scholar 

  • Dai, J.Y., 2010. Study on Optimization Problem for Vehicle Detection Station Network Layout. MS Thesis, Jilin University, China (in Chinese).

    Google Scholar 

  • Daskin, M.S., 1995. Network and Discrete Location: Models, Algorithms, and Applications. Wiley, New York, NY. [doi:10.1002/9781118032343]

    Book  MATH  Google Scholar 

  • Drezner, Z., Hamacher, H., 2002. Facility Location: Applications and Theory. Springer-Verlag, Berlin. [doi:10.1007/978-3-642-56082-8]

    Book  Google Scholar 

  • Ernst, A.T., Krichnamoorthy, M., 1999. Solution algorithms for the capacitated single allocation hub location problem. Ann. Oper. Res., 86:141–159. [doi:10.1023/A:1018994432663]

    Article  MathSciNet  MATH  Google Scholar 

  • Escavy, J.I., Herrero, M.J., 2013. The use of location-allocation techniques for exploration targeting of high place-value industrial minerals: a market-based prospectivity study of the Spanish gypsum resources. Ore Geol. Rev., 53:504–516. [doi:10.1016/j.oregeorev.2013.02.010]

    Article  Google Scholar 

  • Farahani, R.Z., Hekmatfar, M., 2009. Facility Location: Concepts, Models, Algorithms and Case Studies. Physica-Verlag, Heidelberg.

    Book  Google Scholar 

  • Farahani, R.Z., SteadieSeifi, M., Asgari, N., 2010. Multiple criteria facility location problems: a survey. Appl. Math. Model., 34(7):1689–1709. [doi:10.1016/j.apm.2009.10.005]

    Article  MathSciNet  MATH  Google Scholar 

  • Farahani, R.Z., Asgari, N., Heidari, N., et al., 2012. Covering problems in facility location: a review. Comput. Ind. Eng., 62(1):368–407. [doi:10.1016/j.cie.2011.08.020]

    Article  Google Scholar 

  • Gong, D., Gen, M., Xu, W., et al., 1995. Hybrid evolutionary method for obstacle location-allocation problem. Int. J. Comput. Ind. Eng., 29(1–4):525–530. [doi:10.1016/0360-8352(95)00128-N]

    Article  Google Scholar 

  • Huang, Y., Lin, L., 2014. Designing a location update strategy for free-moving and network-constrained objects with varying velocity. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(8):675–686. [doi:10.1631/jzus.C1300337]

    Article  MathSciNet  Google Scholar 

  • Ke, H., Liu, B., 2010. Fuzzy project scheduling problem and its hybrid intelligent algorithm. Appl. Math. Model., 34(2):301–308. [doi:10.1016/j.apm.2009.04.011]

    Article  MathSciNet  MATH  Google Scholar 

  • Klose, A., Drexl, A., 2005. Facility location models for distribution system design. Eur. J. Oper. Res., 162(1): 4–29. [doi:10.1016/j.ejor.2003.10.031]

    Article  MathSciNet  MATH  Google Scholar 

  • Kuenne, R.E., Soland, R.M., 1972. Exact and approximate solutions to the multisource Weber problem. Math. Program., 3(1):193–209. [doi:10.1007/BF01584989]

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Z., Tian, G.D., Cheng, G., et al., 2014. An integrated cultural particle swarm algorithm for multi-objective reliability-based design optimization. Proc. Inst. Mech. Eng. C, 228(7):1185–1196. [doi:10.1177/0954406213502589]

    Article  Google Scholar 

  • Liu, B., 2004. Uncertainty Theory: an Introduction to Its Axiomatic Foundations. Springer-Verlag, Berlin. [doi:10.1007/978-3-540-39987-2]

    Book  Google Scholar 

  • Liu, B., 2006. A survey of credibility theory. Fuzzy Optim. Dec. Making, 5(4):387–408. [doi:10.1007/s10700-006-0016-x]

    Article  Google Scholar 

  • Liu, B., 2010. Uncertainty Theory: a Branch of Mathematics for Modeling Human Uncertainty. Springer, Berlin. [doi:10.1007/978-3-642-13959-8]

    Book  Google Scholar 

  • Liu, B., Liu, Y.K., 2002. Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst., 10(4):445–450. [doi:10.1109/TFUZZ.2002.800692]

    Article  Google Scholar 

  • Logendran, R., Terrell, M.P., 1988. Uncapacitated plant location-allocation problems with price sensitive stochastic demands. Comput. Oper. Res., 15(2):189–198. [doi:10.1016/0305-0548(88)90011-1]

    Article  Google Scholar 

  • Lu, Z.Q., Bostel, N., 2007. A facility location model for logistics systems including reverse flows: the case of remanufacturing activities. Comput. Oper. Res., 34(2): 299–323. [doi:10.1016/j.cor.2005.03.002]

    Article  MathSciNet  MATH  Google Scholar 

  • Min, H., Melachrinoudis, E., Wu, X., 1997. Dynamic expansion and location of an airport: a multiple objective approach. Transp. Res. Part A, 31(5):403–417. [doi:10.1016/S0965-8564(96)00037-7]

    Article  Google Scholar 

  • Mousavi, S.M., Niaki, S.T.A., 2013. Capacitated location allocation problem with stochastic location and fuzzy demand: a hybrid algorithm. Appl. Math. Model., 37(7): 5109–5119. [doi:10.1016/j.apm.2012.10.038]

    Article  MathSciNet  Google Scholar 

  • Murray, A.T., Church, R.L., 1996. Applying simulated annealing to location-planning models. J. Heur., 2(1):31–53. [doi:10.1007/BF00226292]

    Article  Google Scholar 

  • Nickel, S., Puetro, J., 2005. Location Theory: a Unified Approach. Springer-Verlag Berlin Heidelberg.

    Google Scholar 

  • O’Kelly, M.E., 1987. A quadratic integer program for the location of interacting hub facilities. Eur. J. Oper. Res., 32(3):393–404. [doi:10.1016/S0377-2217(87)80007-3]

    Article  MathSciNet  MATH  Google Scholar 

  • Qiang, T.G., Tian, G.D., Chu, J.W., et al., 2013. Location analysis of vehicle inspection station based on NN-GA. Adv. Inf. Sci. Serv. Sci., 5(4):622–629. [doi:10.4156/AISS.vol5.issue4.76]

    Google Scholar 

  • Rajagopalan, H.K., Saydam, C., Xiao, J., 2008. A multi-period set covering location model for dynamic redeployment of ambulances. Comput. Oper. Res., 35(3):814–826. [doi:10.1016/j.cor.2006.04.003]

    Article  MATH  Google Scholar 

  • Sahin, G., Sural, H., 2007. A review of hierarchical facility location models. Comput. Oper. Res., 34(8):2310–2331. [doi:10.1016/j.cor.2005.09.005]

    Article  MathSciNet  MATH  Google Scholar 

  • Taaffe, K., Geunes, J., Romeijn, H.E., 2010. Supply capacity acquisition and allocation with uncertain customer demands. Eur. J. Oper. Res., 204(2):263–273. [doi:10.1016/j.ejor.2009.10.030]

    Article  MATH  Google Scholar 

  • Tian, G.D., Liu, Y., 2014. Energy-efficient models of sustainable location for a vehicle inspection station with emission constraints. IEEE Trans. Autom. Sci. Eng., [doi:10.1109/TASE.2014.2360673]

    Google Scholar 

  • Tian, G.D., Chu, J.W., Liu, Y.M., et al., 2011. Expected energy analysis for industrial process planning problem with fuzzy time parameters. Comput. Chem. Eng., 35(12): 2905–2912. [doi:10.1016/j.compchemeng.2011.05.012]

    Article  Google Scholar 

  • Tian, G.D., Zhou, M.C., Chu, J.W., et al., 2012. Probability evaluation models of product disassembly cost subject to random removal time and different removal labor cost. IEEE Trans. Autom. Sci. Eng., 9(2):288–295. [doi:10.1109/TASE.2011.2176489]

    Article  Google Scholar 

  • Tian, G.D., Chu, J.W., Hu, H.S., et al., 2014a. Technology innovation system and its integrated structure for automotive components remanufacturing industry development in China. J. Cleaner Prod., 85(15):419–432. [doi:10.1016/j.jclepro.2014.09.020]

    Article  Google Scholar 

  • Tian, G.D., Zhou, M.C., Chu, J.W., et al., 2014b. Stochastic cost-profit tradeoff model for locating an automotive service enterprise. IEEE Trans. Autom. Sci. Eng., (99):1–8. [doi:10.1109/TASE.2013.2297623]

    Google Scholar 

  • Vasko, F.J., Newhart, D.D., Stott, K.L., et al., 2003. A large-scale application of the partial coverage uncapacitated facility location problem problem. J. Oper. Res. Soc., 54(1):11–20. [doi:10.1057/palgrave.jors.2601469]

    Article  MATH  Google Scholar 

  • Wang, K.J., Makond, B., Liu, S.Y., 2011. Location and allocation decisions in a two-echelon supply chain with stochastic demand: a genetic-algorithm based solution. Expert Syst. Appl., 38(5):6125–6131. [doi:10.1016/j.eswa.2010.11.008]

    Article  Google Scholar 

  • Wang, S., Watada, J., 2010. Recourse-based facility location problems in hybrid uncertain environment. IEEE Trans. Syst. Man Cybern. B, 40(4):1176–1187. [doi:10.1109/TSMCB.2009.2035630]

    Article  MathSciNet  Google Scholar 

  • Wang, S., Watada, J., 2012. A hybrid modified PSO approach to VaR-based facility location problems with variable capacity in fuzzy random uncertainty. Inf. Sci., 192:3–18. [doi:10.1016/j.ins.2010.02.014]

    Article  MATH  Google Scholar 

  • Wang, S., Watada, J., Pedrycz, W., 2009. Value-at-risk-based two-stage fuzzy facility location problems. IEEE Trans. Ind. Inf., 5(4):465–482. [doi:10.1109/TII.2009.2022542]

    Article  Google Scholar 

  • Wen, M., Iwamura, K., 2008. Fuzzy facility location-allocation problem under the Hurwicz criterion. Eur. J. Oper. Res., 184(2):627–635. [doi:10.1016/j.ejor.2006.11.029]

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, J., Liu, B., 2003. New stochastic models for capacitated location-allocation problem. Comput. Ind. Eng., 45(1): 111–125. [doi:10.1016/S0360-8352(03)00021-4]

    Article  Google Scholar 

  • Zhou, J., Liu, B., 2007. Modeling capacitated location-allocation problem with fuzzy demands. Comput. Ind. Eng., 53(3):454–468. [doi:10.1016/j.cie.2006.06.019]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangdong Tian.

Additional information

Project supported by the Fundamental Research Funds for the Central Universities (No. 2572014BB08) and the National Natural Science Foundation of China (Nos. 51405075, 61304182, 71371141, and 71001080)

ORCID: Guangdong TIAN, http://orcid.org/0000-0001-9794-294X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, G., Ke, H. & Chen, X. Fuzzy cost-profit tradeoff model for locating a vehicle inspection station considering regional constraints. J. Zhejiang Univ. - Sci. C 15, 1138–1146 (2014). https://doi.org/10.1631/jzus.C1400116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1400116

Key words

CLC number

Navigation