Skip to main content

Application of formal languages in polynomial transformations of instances between NP-complete problems

Abstract

We propose the usage of formal languages for expressing instances of NP-complete problems for their application in polynomial transformations. The proposed approach, which consists of using formal language theory for polynomial transformations, is more robust, more practical, and faster to apply to real problems than the theory of polynomial transformations. In this paper we propose a methodology for transforming instances between NP-complete problems, which differs from Garey and Johnson’s. Unlike most transformations which are used for proving that a problem is NP-complete based on the NP-completeness of another problem, the proposed approach is intended for extrapolating some known characteristics, phenomena, or behaviors from a problem A to another problem B. This extrapolation could be useful for predicting the performance of an algorithm for solving B based on its known performance for problem A, or for taking an algorithm that solves A and adapting it to solve B.

This is a preview of subscription content, access via your institution.

References

  1. Aho, A.V., Sethi, R., Ullman, J.D., 1986. Compilers: Principles. Techniques, and Tools. Addison-Wesley, USA, p.14–16.

    Google Scholar 

  2. Backus, J.W., 1959. The Syntax and Semantics of the Proposed International Algebraic Language of the Zurich Association for Computing Machinery (ACM) and the Association for Applied Mathematics and Mechanics (GAMM) Conference. Proc. Int. Conf. on Information Processing, p.125–132.

    Google Scholar 

  3. Bao, J., Zhou, L.J., Yan, Y., 2012. Analysis on complexity of neural networks using integer weights. Appl. Math. Inf. Sci., 6:317–323.

    MathSciNet  Google Scholar 

  4. Bennett, J.H., 1962. On Spectra. PhD Thesis, Princeton University, USA.

    Google Scholar 

  5. Bennett, C.H., Brassard, G., Jozsa, R., Mayers, D., Peres, A., Schumacher, B., Wootters, W.K., 1994. Reduction of quantum entropy by reversible extraction of classical information. J. Mod. Opt., 41(12):2307–2314. [doi:10.1080/09500349414552161]

    MATH  Article  Google Scholar 

  6. Brown, J.C., 1960. Loglan. Sci. Am., 202:53–63. [doi:10.1038/scientificamerican0660-53]

    Article  Google Scholar 

  7. Cobham, A., 1964. The Intrinsic Computational Difficulty of Functions. Proc. Congress for Logic, Mathematics, and Philosophy of Science, p.24–30.

    Google Scholar 

  8. Cook, S.A., 1971. The Complexity of Theorem Proving Procedures. Proc. 3rd ACM Symp. on Theory of Computing, p.151–158.

    Google Scholar 

  9. Cook, S.A., 1983. An overview of computational complexity. Commun. ACM, 26(6):400–408. [doi:10.1145/358141.358144]

    MATH  Article  Google Scholar 

  10. Deutsch, D., 1989. Quantum computational networks. Proc. R. Soc. Lond. A, 425(1868):73–90. [doi:10.1098/rspa.1989.0099]

    MathSciNet  MATH  Article  Google Scholar 

  11. Edmonds, J., 1965. Paths, trees, and flowers. Canad. J. Math., 17:449–467. [doi:10.4153/CJM-1965-045-4]

    MathSciNet  MATH  Article  Google Scholar 

  12. Garey, M.R., Johnson, D.S., 1979. Computers and Intractability: a Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York, p.1–10.

    MATH  Google Scholar 

  13. Hartmanis, J., Stearns, R.E., 1965. On the computational complexity of algorithms. Trans. Am. Math. Soc., 117(5): 285–306. [doi:10.1090/S0002-9947-1965-0170805-7]

    MathSciNet  MATH  Article  Google Scholar 

  14. Hopcroft, J., Ullman, J., 1969. Formal Languages and Their Relation to Automata. Addison-Wesley, USA, p.1–7.

    MATH  Google Scholar 

  15. Jonsson, P., Bäckström, C., 1994. Complexity Results for State-Variable Planning under Mixed Syntactical and Structural Restriction. Proc. 6th Int. Conf. on Artificial Intelligence: Methodology, Systems, Applications, p.205–213.

    Google Scholar 

  16. Karp, R.M., 1972. Reducibility among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (Eds.), Complexity of Computer Computations. Plenum Press, New York, p.85–104. [doi:10.1007/978-1-4684-2001-2_9]

  17. Kolmogorov, A.N., 1965. Three approaches to the quantitative definition of information. Prob. Inf. Transm., 1:1–7.

    Google Scholar 

  18. Levine, J., 2009. Flex & Bison. O’Reilly Media, USA.

    Google Scholar 

  19. Martello, S., Toth, P., 1991. Knapsack Problems: Algorithms and Computer Implementations. John Wiley & Sons, England, p.221–236.

    Google Scholar 

  20. Orponen, P., 1990. On the Instance Complexity of NP-Hard Problems. Proc. 5th Annual Structure in Complexity Theory Conf., p.20–27. [doi:10.1109/SCT.1990.113951]

    Chapter  Google Scholar 

  21. Papadimitriou, C., Steiglitz, K., 1982. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, New Jersey, p.342–357.

    MATH  Google Scholar 

  22. Papadimitriou, C.H., 1994. Computational Complexity. Addison-Wesley, UK, p.260–265.

    MATH  Google Scholar 

  23. Rabin, M.O., 1959. Speed of Computation and Classification of Recursive Sets. Third Convention of Scientific Societies, p.1–2.

    Google Scholar 

  24. Ruiz-Vanoye, J.A., Díaz-Parra, O., 2011. An overview of the theory of instances computational complexity. Int. J. Combin. Optim. Probl. Inf., 2(2):21–27.

    Google Scholar 

  25. Ruiz-Vanoye, J.A., Díaz-Parra, O., Pérez-Ortega, J., Pazos, R.A., Reyes Salgado, G., González-Barbosa, J.J., 2010. Complexity of Instances for Combinatorial Optimization Problems. In: Al-Dahoud, A. (Ed.), Computational Intelligence & Modern Heuristics, Chapter 19. IN-TECH Education and Publishing, p.319–330. [doi:10.5772/7807]

    Google Scholar 

  26. Ruiz-Vanoye, J.A., Pérez-Ortega, J., Pazos R.A., Díaz-Parra, O., Frausto-Solís, J., Fraire-Huacuja, H.J., Cruz-Reyes, L., Martínez-Flores, J.A., 2011. Survey of polynomial transformations between NP-complete problems. J. Comput. Appl. Math., 235(16):4851–4865. [doi:10.1016/j.cam.2011.02.018]

    MathSciNet  MATH  Article  Google Scholar 

  27. Shannon, C.E., 1948. The mathematical theory of communication. Bell Syst. Techn. J., 27(3):379–423. [doi:10.1002/j.1538-7305.1948.tb01338.x]

    MathSciNet  MATH  Article  Google Scholar 

  28. Sipser, M., 1983. A Complexity Theoretic Approach to Randomness. Proc. 15th ACM Symp. on Theory of Computing, p.330–335.

    Google Scholar 

  29. Solomonoff, R., 1960. A Preliminary Report on a General Theory of Inductive Inference. Report V-131, Zator Co., Cambridge, MA.

    Google Scholar 

  30. Solomonoff, R., 1964a. A formal theory of inductive inference. Part I. Inf. Control, 7(1):1–22. [doi:10.1016/S0019-9958(64)90223-2]

    MathSciNet  MATH  Article  Google Scholar 

  31. Solomonoff, R., 1964b. A formal theory of inductive inference. Part II. Inf. Control, 7(2):224–254. [doi:10.1016/S0019-9958(64)90131-7]

    MathSciNet  MATH  Article  Google Scholar 

  32. Stockmeyer, L.J., 1979. Classifying the Computational Complexity of Problems. Research Report RC 7606, Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights, NY.

    Google Scholar 

  33. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H., 1988. Information-Based Complexity. Academic Press, New York.

    MATH  Google Scholar 

  34. Turing, A.M., 1937. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc., s2-42(1):230–265. [doi:10.1112/plms/s2-42.1.230]

    MathSciNet  Article  Google Scholar 

  35. Wozniakowski, H., 1985. Survey of information-based complexity. J. Compl., 1(1):11–44. [doi:10.1016/0885-064X(85)90020-2]

    MathSciNet  MATH  Article  Google Scholar 

  36. Yao, A.C., 1993. Quantum Circuit Complexity. Proc. 34th Annual IEEE Symp. on Foundations of Computer Science, p.352–361.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Ruiz-Vanoye.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ruiz-Vanoye, J.A., Pérez-Ortega, J., Pazos Rangel, R.A. et al. Application of formal languages in polynomial transformations of instances between NP-complete problems. J. Zhejiang Univ. - Sci. C 14, 623–633 (2013). https://doi.org/10.1631/jzus.C1200349

Download citation

Key words

  • Formal languages
  • Polynomial transformations
  • NP-completeness

CLC number

  • TP301.5