Journal of Zhejiang University SCIENCE C

, Volume 14, Issue 8, pp 623–633 | Cite as

Application of formal languages in polynomial transformations of instances between NP-complete problems

  • Jorge A. Ruiz-Vanoye
  • Joaquín Pérez-Ortega
  • Rodolfo A. Pazos Rangel
  • Ocotlán Díaz-Parra
  • Héctor J. Fraire-Huacuja
  • Juan Frausto-Solís
  • Gerardo Reyes-Salgado
  • Laura Cruz-Reyes
Article
  • 104 Downloads

Abstract

We propose the usage of formal languages for expressing instances of NP-complete problems for their application in polynomial transformations. The proposed approach, which consists of using formal language theory for polynomial transformations, is more robust, more practical, and faster to apply to real problems than the theory of polynomial transformations. In this paper we propose a methodology for transforming instances between NP-complete problems, which differs from Garey and Johnson’s. Unlike most transformations which are used for proving that a problem is NP-complete based on the NP-completeness of another problem, the proposed approach is intended for extrapolating some known characteristics, phenomena, or behaviors from a problem A to another problem B. This extrapolation could be useful for predicting the performance of an algorithm for solving B based on its known performance for problem A, or for taking an algorithm that solves A and adapting it to solve B.

Key words

Formal languages Polynomial transformations NP-completeness 

CLC number

TP301.5 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Sethi, R., Ullman, J.D., 1986. Compilers: Principles. Techniques, and Tools. Addison-Wesley, USA, p.14–16.Google Scholar
  2. Backus, J.W., 1959. The Syntax and Semantics of the Proposed International Algebraic Language of the Zurich Association for Computing Machinery (ACM) and the Association for Applied Mathematics and Mechanics (GAMM) Conference. Proc. Int. Conf. on Information Processing, p.125–132.Google Scholar
  3. Bao, J., Zhou, L.J., Yan, Y., 2012. Analysis on complexity of neural networks using integer weights. Appl. Math. Inf. Sci., 6:317–323.MathSciNetGoogle Scholar
  4. Bennett, J.H., 1962. On Spectra. PhD Thesis, Princeton University, USA.Google Scholar
  5. Bennett, C.H., Brassard, G., Jozsa, R., Mayers, D., Peres, A., Schumacher, B., Wootters, W.K., 1994. Reduction of quantum entropy by reversible extraction of classical information. J. Mod. Opt., 41(12):2307–2314. [doi:10.1080/09500349414552161]MATHCrossRefGoogle Scholar
  6. Brown, J.C., 1960. Loglan. Sci. Am., 202:53–63. [doi:10.1038/scientificamerican0660-53]CrossRefGoogle Scholar
  7. Cobham, A., 1964. The Intrinsic Computational Difficulty of Functions. Proc. Congress for Logic, Mathematics, and Philosophy of Science, p.24–30.Google Scholar
  8. Cook, S.A., 1971. The Complexity of Theorem Proving Procedures. Proc. 3rd ACM Symp. on Theory of Computing, p.151–158.Google Scholar
  9. Cook, S.A., 1983. An overview of computational complexity. Commun. ACM, 26(6):400–408. [doi:10.1145/358141.358144]MATHCrossRefGoogle Scholar
  10. Deutsch, D., 1989. Quantum computational networks. Proc. R. Soc. Lond. A, 425(1868):73–90. [doi:10.1098/rspa.1989.0099]MathSciNetMATHCrossRefGoogle Scholar
  11. Edmonds, J., 1965. Paths, trees, and flowers. Canad. J. Math., 17:449–467. [doi:10.4153/CJM-1965-045-4]MathSciNetMATHCrossRefGoogle Scholar
  12. Garey, M.R., Johnson, D.S., 1979. Computers and Intractability: a Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York, p.1–10.MATHGoogle Scholar
  13. Hartmanis, J., Stearns, R.E., 1965. On the computational complexity of algorithms. Trans. Am. Math. Soc., 117(5): 285–306. [doi:10.1090/S0002-9947-1965-0170805-7]MathSciNetMATHCrossRefGoogle Scholar
  14. Hopcroft, J., Ullman, J., 1969. Formal Languages and Their Relation to Automata. Addison-Wesley, USA, p.1–7.MATHGoogle Scholar
  15. Jonsson, P., Bäckström, C., 1994. Complexity Results for State-Variable Planning under Mixed Syntactical and Structural Restriction. Proc. 6th Int. Conf. on Artificial Intelligence: Methodology, Systems, Applications, p.205–213.Google Scholar
  16. Karp, R.M., 1972. Reducibility among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (Eds.), Complexity of Computer Computations. Plenum Press, New York, p.85–104. [doi:10.1007/978-1-4684-2001-2_9]Google Scholar
  17. Kolmogorov, A.N., 1965. Three approaches to the quantitative definition of information. Prob. Inf. Transm., 1:1–7.Google Scholar
  18. Levine, J., 2009. Flex & Bison. O’Reilly Media, USA.Google Scholar
  19. Martello, S., Toth, P., 1991. Knapsack Problems: Algorithms and Computer Implementations. John Wiley & Sons, England, p.221–236.Google Scholar
  20. Orponen, P., 1990. On the Instance Complexity of NP-Hard Problems. Proc. 5th Annual Structure in Complexity Theory Conf., p.20–27. [doi:10.1109/SCT.1990.113951]CrossRefGoogle Scholar
  21. Papadimitriou, C., Steiglitz, K., 1982. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, New Jersey, p.342–357.MATHGoogle Scholar
  22. Papadimitriou, C.H., 1994. Computational Complexity. Addison-Wesley, UK, p.260–265.MATHGoogle Scholar
  23. Rabin, M.O., 1959. Speed of Computation and Classification of Recursive Sets. Third Convention of Scientific Societies, p.1–2.Google Scholar
  24. Ruiz-Vanoye, J.A., Díaz-Parra, O., 2011. An overview of the theory of instances computational complexity. Int. J. Combin. Optim. Probl. Inf., 2(2):21–27.Google Scholar
  25. Ruiz-Vanoye, J.A., Díaz-Parra, O., Pérez-Ortega, J., Pazos, R.A., Reyes Salgado, G., González-Barbosa, J.J., 2010. Complexity of Instances for Combinatorial Optimization Problems. In: Al-Dahoud, A. (Ed.), Computational Intelligence & Modern Heuristics, Chapter 19. IN-TECH Education and Publishing, p.319–330. [doi:10.5772/7807]Google Scholar
  26. Ruiz-Vanoye, J.A., Pérez-Ortega, J., Pazos R.A., Díaz-Parra, O., Frausto-Solís, J., Fraire-Huacuja, H.J., Cruz-Reyes, L., Martínez-Flores, J.A., 2011. Survey of polynomial transformations between NP-complete problems. J. Comput. Appl. Math., 235(16):4851–4865. [doi:10.1016/j.cam.2011.02.018]MathSciNetMATHCrossRefGoogle Scholar
  27. Shannon, C.E., 1948. The mathematical theory of communication. Bell Syst. Techn. J., 27(3):379–423. [doi:10.1002/j.1538-7305.1948.tb01338.x]MathSciNetMATHCrossRefGoogle Scholar
  28. Sipser, M., 1983. A Complexity Theoretic Approach to Randomness. Proc. 15th ACM Symp. on Theory of Computing, p.330–335.Google Scholar
  29. Solomonoff, R., 1960. A Preliminary Report on a General Theory of Inductive Inference. Report V-131, Zator Co., Cambridge, MA.Google Scholar
  30. Solomonoff, R., 1964a. A formal theory of inductive inference. Part I. Inf. Control, 7(1):1–22. [doi:10.1016/S0019-9958(64)90223-2]MathSciNetMATHCrossRefGoogle Scholar
  31. Solomonoff, R., 1964b. A formal theory of inductive inference. Part II. Inf. Control, 7(2):224–254. [doi:10.1016/S0019-9958(64)90131-7]MathSciNetMATHCrossRefGoogle Scholar
  32. Stockmeyer, L.J., 1979. Classifying the Computational Complexity of Problems. Research Report RC 7606, Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights, NY.Google Scholar
  33. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H., 1988. Information-Based Complexity. Academic Press, New York.MATHGoogle Scholar
  34. Turing, A.M., 1937. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc., s2-42(1):230–265. [doi:10.1112/plms/s2-42.1.230]MathSciNetCrossRefGoogle Scholar
  35. Wozniakowski, H., 1985. Survey of information-based complexity. J. Compl., 1(1):11–44. [doi:10.1016/0885-064X(85)90020-2]MathSciNetMATHCrossRefGoogle Scholar
  36. Yao, A.C., 1993. Quantum Circuit Complexity. Proc. 34th Annual IEEE Symp. on Foundations of Computer Science, p.352–361.Google Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jorge A. Ruiz-Vanoye
    • 1
  • Joaquín Pérez-Ortega
    • 2
  • Rodolfo A. Pazos Rangel
    • 3
  • Ocotlán Díaz-Parra
    • 1
  • Héctor J. Fraire-Huacuja
    • 3
  • Juan Frausto-Solís
    • 4
  • Gerardo Reyes-Salgado
    • 5
  • Laura Cruz-Reyes
    • 3
  1. 1.DACIUniversidad Autónoma del CarmenCd. del CarmenMexico
  2. 2.Computer ScienceCentro Nacional de Investigación y Desarrollo TecnológicoCuernavacaMexico
  3. 3.Systems and Computer ScienceInstituto Tecnológico de Ciudad MaderoCiudad MaderoMexico
  4. 4.InformaticsUniversidad Politécnica del Estado de MorelosJiutepecMexico
  5. 5.Computer ScienceInstituto Tecnológico de CuautlaCuautlaMexico

Personalised recommendations