Skip to main content
Log in

A new artificial bee swarm algorithm for optimization of proton exchange membrane fuel cell model parameters

Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Cite this article


An appropriate mathematical model can help researchers to simulate, evaluate, and control a proton exchange membrane fuel cell (PEMFC) stack system. Because a PEMFC is a nonlinear and strongly coupled system, many assumptions and approximations are considered during modeling. Therefore, some differences are found between model results and the real performance of PEMFCs. To increase the precision of the models so that they can describe better the actual performance, optimization of PEMFC model parameters is essential. In this paper, an artificial bee swarm optimization algorithm, called ABSO, is proposed for optimizing the parameters of a steady-state PEMFC stack model suitable for electrical engineering applications. For studying the usefulness of the proposed algorithm, ABSO-based results are compared with the results from a genetic algorithm (GA) and particle swarm optimization (PSO). The results show that the ABSO algorithm outperforms the other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others


  • Akbari, R., Mohammadi, A., Ziarati, K., 2010. A novel bee swarm optimization algorithm for numerical function optimization. Commun. Nonl. Sci. Numer. Simul., 15(10):3142–3155. [doi:10.1016/j.cnsns.2009.11.003]

    Article  MathSciNet  Google Scholar 

  • Bernardi, D.M., Verbrugge, M.W., 1992. A mathematical model of the solid-polymer-electrolyte fuel-cell. J. Electrochem. Soc., 139(9):2477–2491. [doi:10.1149/1.2221251]

    Article  Google Scholar 

  • Corrêa, J.M., Farret, F.A., Canha, L.N., Simões, M.G., 2004. An electrochemical-based fuel-cell model suitable for electrical engineering automation approach. IEEE Trans. Ind. Electr., 51(5):1103–1112. [doi:10.1109/TIE.2004.834972]

    Article  Google Scholar 

  • Fuller, T.F., Newman, J., 1993. Water and thermal management in solid-polymer-electrolyte fuel-cells. J. Electrochem. Soc., 140(5):1218–1225. [doi:10.1149/1.2220960]

    Article  Google Scholar 

  • Jia, J., Li, Q., Wang, Y., Cham, Y.T., Han, M., 2009. Modeling and dynamic characteristic simulation of a proton exchange membrane fuel cell. IEEE Trans. Energy Conv., 24(1):283–291. [doi:10.1109/TEC.2008.2011837]

    Article  Google Scholar 

  • Karaboga, D., Basturk, B., 2007. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim., 39(3):459–471. [doi:10.1007/s10898-007-9149-x]

    Article  MathSciNet  MATH  Google Scholar 

  • Mann, R.F., Amphlett, J.C., Hooper, M.A.I., Jensen, H.M., Peppley, B.A., Roberge, P.R., 2000. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. J. Power Sources, 86(1–2):173–180. [doi:10.1016/S0378-7753(99)00484-X]

    Article  Google Scholar 

  • Mo, Z.J., Zhu, X.J., Wei, L.Y., Cao, G.Y., 2006. Parameter optimization for a PEMFC model with a hybrid genetic algorithm. Int. J. Energy Res., 30(8):585–597. [doi:10.1002/er.1170]

    Article  Google Scholar 

  • Nguyen, T.V., White, R.E., 1993. A water and heat management model for proton-exchange-membrane fuel-cells. J. Electrochem. Soc., 140(8):2178–2186. [doi:10.1149/1.2220792]

    Article  Google Scholar 

  • Ohenoja, M., Leiviska, K., 2010. Validation of genetic algorithm results in a fuel cell model. Int. J. Hydr. Energy, 35(22):12618–12625. [doi:10.1016/j.ijhydene.2010.07.129]

    Article  Google Scholar 

  • Outeiro, M.T., Chibante, R., Carvalho, A.S., de Almeida, A.T., 2008. A parameter optimized model of a proton exchange membrane fuel cell including temperature effects. J. Power Sources, 185(2):952–960. [doi:10.1016/j. jpowsour.2008.08.019]

    Article  Google Scholar 

  • Outeiro, M.T., Chibante, R., Carvalho, A.S., de Almeida, A.T., 2009. A new parameter extraction method for accurate modeling of PEM fuel cell. Int. J. Energy Res., 33(11):978–988. [doi:10.1002/er.1525]

    Article  Google Scholar 

  • Springer, T.E., Zawodzinski, T.A., Gottesfeld, S., 1991. Polymer electrolyte fuel-cell model. J. Electrochem. Soc., 138(8):2334–2342. [doi:10.1149/1.2085971]

    Article  Google Scholar 

  • Yang, X.S., 2005. Engineering optimizations via nature-inspired virtual bee algorithms. LNCS, 3562:317–323. [doi:10.1007/11499305_33]

    Google Scholar 

  • Ye, M., Wang, X., Xu, Y., 2009. Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization. Int. J. Hydr. Energy, 34(2):981–989. [doi:10.1016/j.ijhydene.2008.11.026]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alireza Askarzadeh.

Additional information

Project supported by the Renewable Energy Organization of Iran (SANA)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Askarzadeh, A., Rezazadeh, A. A new artificial bee swarm algorithm for optimization of proton exchange membrane fuel cell model parameters. J. Zhejiang Univ. - Sci. C 12, 638–646 (2011).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:

Key words

CLC number