Skip to main content

Quasi-distributed sensing network based on coherence multiplexing and spatial division multiplexing for coal mine security monitoring

Abstract

A low-cost fiber Bragg grating (FBG) sensing system for coal-mine security monitoring is proposed in this paper. Based on the coherence multiplexing (CM) and spatial division multiplexing (SDM) techniques, this hybrid sensing network can support more than 40 sensors for quasi-distributed detection. It is demonstrated experimentally that the multiplexed sensing signal of each sensor can be clearly distinguished by an optical low-coherence reflectometry (OLCR). Methane concentration is detected with maximum sensitivities of an intensity variation of 10.92% and a concentration variation of 1%, using a well-designed sensor structure. Strain and temperature are also detected by this system, which also exhibits good results in the experiment.

This is a preview of subscription content, access via your institution.

References

  • Chapeleau, X., Leduc, D., Lupi, C., Ny, R.L., Douay, M., Niay, P., Boisrobert, C., 2003. Experimental synthesis of fiber Bragg gratings using optical low coherence reflectometry. Appl. Phys. Lett., 82(24):4227–4229. [doi:10.1063/1.158 4090]

    Article  Google Scholar 

  • Chin, K.K., Sun, Y., Feng, G., Georgiou, G.E., Guo, K., Niver, E., Roman, H., Noe, K., 2007. Fabry-Perot diaphragm fiber-optic sensor. Appl. Opt., 46(31):7614–7619. [doi:10.1364/AO.46.007614]

    Article  Google Scholar 

  • Crunelle, C., Wuilpart, M., Caucheteur, C., Mégret, P., 2009. Original interrogation system for quasi-distributed FBG-based temperature sensor with fast demodulation technique. Sens. Actuat. A, 150(2):192–198. [doi:10.1016/j.sna.2008.11.018]

    Article  Google Scholar 

  • Dennison, C.R., Wild, P.M., 2008. Enhanced sensitivity of an in-fibre Bragg grating pressure sensor achieved through fibre diameter reduction. Meas. Sci. Technol., 19(12): 125301. [doi:10.1088/0957-0233/19/12/125301]

    Article  Google Scholar 

  • de Oliveira, R., Ramos, C.A., Marques, A.T., 2007. Health monitoring of composite structures by embedded FBG and interferometric Fabry-Pérot sensors. Comput. & Struct., 82:340–346. [doi:10.1016/j.compstruc.2007.01. 040]

    Google Scholar 

  • Gagliardi, G., Salza, M., Ferraro, P., de Natale, P., di Maio, A., Carlino, S., de Natale, G., Bosch, E., 2008. Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications. Meas. Sci. Technol., 19(8):085306. [doi:10.1088/0957-0233/19/8/085306]

    Article  Google Scholar 

  • Guan, Z.G., Chen, D., He, S., 2007. Coherence multiplexing of distributed sensors based on fiber Bragg grating pairs. J. Lightwave Technol., 25(8):2143–2148. [doi:10.1109/JLT. 2007.901330]

    Article  Google Scholar 

  • Han, M., Wang, A., 2006. Mode power distribution effect in white-light multimode fiber extrinsic Fabry-Perot interferometric sensor systems. Opt. Lett., 31(9):1202–1204. [doi:10.1364/OL.31.001202]

    Article  MathSciNet  Google Scholar 

  • Igawa, H., Ohta, K., Kasai, T., Yamaguchi, I., Murayama, H., Kageyama, K., 2008. Distributed measurements with a long gauge FBG sensor using optical frequency domain reflectometry. J. Sol. Mech. Mater. Eng., 2(9):1242–1252. [doi:10.1299/jmmp.2.1242]

    Article  Google Scholar 

  • Karalekas, D., Cugnonia, J., Botsis, J., 2008. Monitoring of process induced strains in a single fibre composite using FBG sensor: a methodological study. Compos. Part A: Appl. Sci. Manuf., 39(7):1118–1127. [doi:10.1016/j. compositesa.2008.04.010]

    Article  Google Scholar 

  • Kersey, A.D., Davis, M.A., Patrick, H.J., LeBlanc, M., Koo, K.P., 1997. Fiber grating sensors. J. Lightwave Technol., 15(8):1442–1463. [doi:10.1109/50.618377]

    Article  Google Scholar 

  • Liu, T.Y., 2007. All Fiber Optic Coal Mine Safety Monitoring System. Asia Optical Fiber Communication and Optoelectronic Exposition and Conf., p.174–176. [doi:10.1109/AOE.2007.4410743]

  • Liu, W.S., Guan, Z.G., Liu, G.R., Yan, C.S., He, S., 2008. Optical low-coherence reflectometry for a distributed sensor array of fiber Bragg gratings. Sens. Actuat. A, 144(1):64–68. [doi:10.1016/j.sna.2008.01.002]

    Article  Google Scholar 

  • Lu, P., Men, L., Chen, Q., 2008. Resolving cross sensitivity of fiber Bragg gratings with different polymeric coatings. Appl. Phys. Lett., 92(17):171112. [doi:10.1063/1.2919 796]

    Article  Google Scholar 

  • Men, L., Lu, P., Chen, Q., 2008. Intelligent multiparameter sensing with fiber Bragg gratings. Appl. Phys. Lett., 93: 071110. [doi:10.1063/1.2975186]

    Article  Google Scholar 

  • Sorin, W.V., Baney, D.M., 1995. Multiplexed sensing using optical low-coherence reflectometry. IEEE Photon. Technol. Lett., 7(8):917–919. [doi:10.1109/68.404014]

    Article  Google Scholar 

  • Tsuda, H., Sato, E., Nakajima, T., Nakamura, H., Arakawa, T., Shiono, H., Minato, M., Kurabayashi, H., Sato, A., 2009. Acoustic emission measurement using a strain-insensitive fiber Bragg grating sensor under varying load conditions. Opt. Lett., 34(19):2942–2944. [doi:10.1364/OL.34.002 942]

    Article  Google Scholar 

  • Zhou, B., Guan, Z.G., 2007. Methane Concentration Monitoring System Based on a Pair of FBGs. Asia Optical Fiber Communication and Optoelectronic Conf., p.296–298. [doi:10.1109/AOE.2007.4410784]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-sheng Yan.

Additional information

Project (No. 60707020) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xia, Th., Liu, Ws., Zhou, B. et al. Quasi-distributed sensing network based on coherence multiplexing and spatial division multiplexing for coal mine security monitoring. J. Zhejiang Univ. - Sci. C 11, 762–766 (2010). https://doi.org/10.1631/jzus.C0910716

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C0910716

Key words

  • Fiber Bragg grating
  • Coherence multiplexing
  • Spatial division multiplexing
  • Optical low-coherence reflectometry
  • Methane concentration

CLC number

  • TP212.14