Skip to main content

Feature-based initial population generation for the optimization of job shop problems

Abstract

A suitable initial value of a good (close to the optimal value) scheduling algorithm may greatly speed up the convergence rate. However, the initial population of current scheduling algorithms is randomly determined. Similar scheduling instances in the production process are not reused rationally. For this reason, we propose a method to generate the initial population of job shop problems. The scheduling model includes static and dynamic knowledge to generate the initial population of the genetic algorithm. The knowledge reflects scheduling constraints and priority rules. A scheduling strategy is implemented by matching and combining the two categories of scheduling knowledge, while the experience of dispatchers is externalized to semantic features. Feature similarity based knowledge matching is utilized to acquire the constraints that are in turn used to optimize the scheduling process. Results show that the proposed approach is feasible and effective for the job shop optimization problem.

This is a preview of subscription content, access via your institution.

References

  • Balas, E., Vazacopoulos, A., 1998. Guided local search with shifting bottleneck for job shop scheduling. Manag. Sci., 44(2):262–275. [doi:10.1287/mnsc.44.2.262]

    MATH  Article  Google Scholar 

  • Brucker, P., 1995. Scheduling Algorithms. Springer Verlag, Berlin.

    MATH  Google Scholar 

  • Eren, T., 2009. A bicriteria parallel machine scheduling with a learning effect of setup and removal times. Appl. Math. Model., 33(2):1141–1150. [doi:10.1016/j.apm.2008.01.010]

    MATH  Article  MathSciNet  Google Scholar 

  • Gao, L., 2003. Shop Scheduling with Genetic Algorithms. Tsinghua University Press, Beijing, China (in Chinese).

    Google Scholar 

  • Giffler, B., Thomson, G.L., 1960. Algorithms for solving production scheduling problems. Oper. Res., 8(4):487–503. [doi:10.1287/opre.8.4.487]

    MATH  Article  Google Scholar 

  • Gonzalez-Rodriguez, I., Puente, J., Vela, C.R., Varela, R., 2008. Semantics of schedules for the fuzzy job-shop problem. IEEE Trans. Syst. Cybern. Part A: Syst. Hum., 38(3):655–666. [doi:10.1109/TSMCA.2008.918603]

    Article  Google Scholar 

  • Ida, K., Osawa, A., 2007. Solution of job-shop scheduling problems by an idle time shortening. Electr. Eng. Jpn., 159(2):55–63. [doi:10.1002/eej.20389]

    Article  Google Scholar 

  • Li, N.X., Chen, Y.W., Yang, K.W., 2008. Multi-objective flexible job shop schedule: design and evaluation by simulation modeling. Appl. Soft Comput., 9(1):362–376.

    Google Scholar 

  • Pezzella, F., Morganti, G., Ciaschetti, G., 2008. A genetic algorithm for the flexible job-shop scheduling problem. Comput. Oper. Res., 35(10):3202–3212. [doi:10.1016/j.cor.2007.02.014]

    MATH  Article  Google Scholar 

  • Togan, V., Daloglu, A.T., 2008. An improved genetic algorithm with initial population strategy and self-adaptive member grouping. Comput. & Struct., 86(11–12):1204–1218. [doi:10.1016/j.compstruc.2007.11.006]

    Article  Google Scholar 

  • Tsai, J.T., Chou, J.H., Liu, T.K., 2006. Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm. IEEE Trans. Neur. Networks, 17(1):69–80. [doi:10.1109/TNN.2005.860885]

    Article  Google Scholar 

  • Tsai, J.T., Liu, T.K., Ho, W.H., Chou, J.H., 2008. An improved genetic algorithm for job-shop scheduling problems using Taguchi-based crossover. Int. J. Adv. Manuf. Technol., 38(9–10):987–994. [doi:10.1007/s00170-007-1142-5]

    Article  Google Scholar 

  • Watanabe, M., Ida, K., Gen, M., 2005. A genetic algorithm with modified crossover operator and search area adaptation for the job-shop scheduling problem. Comput. Ind. Eng., 48(4):743–752. [doi:10.1016/j.cie.2004.12.008]

    Article  Google Scholar 

  • Watanabe, M., Ida, K., Gen, M., 2006. Active solution space and search on job-shop scheduling problem. Electr. Eng. Jpn., 154(4):61–67. [doi:10.1002/eej.20185]

    Article  Google Scholar 

  • Zhang, C.Y., Li, P.G., Guan, Z.L., Rao, Y.Q., 2007. A tabu search algorithm with a new neighborhood structure for the job shop scheduling problem. Comput. Oper. Res., 34(11):3229–3242. [doi:10.1016/j.cor.2005.12.002]

    MATH  Article  MathSciNet  Google Scholar 

  • Zhang, C.Y., Guan, Z.L., Liu, Q., Shao, X.Y., Li, P., 2008. New scheduling type applied to solving job-shop scheduling problem. Chin. J. Mech. Eng., 44(10):24–31. [doi:10.3901/JME.2008.10.024]

    MATH  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Chen.

Additional information

Project supported by the Important National Science and Technology Specific Projects (No. 2009ZX04014-031), the Science and Technology Pillar Program of Zhejiang Province (No. 2009C31120), and the Zhejiang Provincial Natural Science Foundation of China (No. Z1080339)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, J., Zhang, Sy., Gao, Z. et al. Feature-based initial population generation for the optimization of job shop problems. J. Zhejiang Univ. - Sci. C 11, 767–777 (2010). https://doi.org/10.1631/jzus.C0910707

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C0910707

Key words

  • Scheduling feature
  • Job shop problem (JSP)
  • Scheduling optimization
  • Scheduling knowledge

CLC number

  • TP278