Skip to main content

Multi-affine registration using local polynomial expansion

Abstract

In this paper, we present a non-linear (multi-affine) registration algorithm based on a local polynomial expansion model. We generalize previous work using a quadratic polynomial expansion model. Local affine models are estimated using this generalized model analytically and iteratively, and combined to a deformable registration algorithm. Experiments show that the affine parameter calculations derived from this quadratic model are more accurate than using a linear model. Experiments further indicate that the multi-affine deformable registration method can handle complex non-linear deformation fields necessary for deformable registration, and a faster convergent rate is verified from our comparison experiment.

This is a preview of subscription content, access via your institution.

References

  • Andronache, A., von Siebenhal, M., Szekeley, G., Cattin, P., 2008. Non-rigid registration of multimodal images using both mutual information and cross-correlation. Med. Image Anal., 12(1):3–15. [doi:10.1016/j.media.2007.06.005]

    Article  Google Scholar 

  • Antoine Maintz, J.B., Viergever, M.A., 1998. A survey of medical image registration. Med. Image Anal., 2(1):1–36. [doi:10.1016/S1361-8415(01)80026-8]

    Article  Google Scholar 

  • Arsigny, V., Pennec, X., Ayache, N., 2005. Polyrigid and polyaffine transformations: a novel geometrical tool to deal with non-rigid deformations-application to the registration of histological slices. Med. Image Anal., 9(6):507–523. [doi:10.1016/j.media.2005.04.001]

    Article  Google Scholar 

  • Farnebäck, G., 2002. Polynomial Expansion for Orientation and Motion Estimation. PhD Thesis, Dissertation No. 790, Linköping Studies in Science and Technology, Sweden.

    Google Scholar 

  • Farnebäck, G., Westin, C.F., 2006. Affine and deformable registration based on polynomial expansion. LNCS, 4190:857–864.

    Google Scholar 

  • Gan, R., Chung, A.C.S., Liao, S., 2008. Maximum distance-gradient for robust image registration. Med. Image Anal., 12(4):452–468. [doi:10.1016/j.media.2008.01.004]

    Article  Google Scholar 

  • Gholipour, A., Kehtarnavaz, N., Bridggs, R.W., Gopinath, K.S., Ringe, W., Whittemove, A., Cheshkov, S., Bakhadinrov, K., 2008. Validation of nonrigid registration between functional and anatomical magnetic resonance brain images. IEEE Trans. Biomed. Eng., 55(2):563–571. [doi:10.1109/TBME.2007.912641]

    Article  Google Scholar 

  • Hellier, P., Barillot, C., Corouge, I., Gibaud, B., le Houalher, G., Collins, D.L., Evans, A., Malandain, G., Ayache, N., Christensen, G.E., et al., 2003. Retrospective evaluation of inter-subject brain registration. IEEE Trans. Med. Imag., 22(9):1120–1130. [doi:10.1109/TMI.2003.816961]

    Article  Google Scholar 

  • Hill, D.L.G., Batchelor, P.G., Holden, M., Hawkers, D.J., 2001. Medical image registration. Phys. Med. Biol., 46(3):R1–R45. [doi:10.1088/0031-9155/46/3/201]

    Article  Google Scholar 

  • Holden, M., 2008. A review of geometric transformations for nonrigid body registration. IEEE Trans. Med. Imag., 27(1):111–128. [doi:10.1109/TMI.2007.904691]

    Article  Google Scholar 

  • Noblet, V., Heinrich, C., Heitz, F., Armspach, J.P., 2006. Retrospective evaluation of a topology preserving non-rigid registration method. Med. Image Anal., 10(3):366–384. [doi:10.1016/j.media.2006.01.001]

    Article  Google Scholar 

  • Pennec, X., Cachier, P., Ayache, N., 1999. Understanding the Demons’ algorithm: 3D non-rigid registration by gradient decent. LNCS, 1679:597–605. [doi:10.1007/10704282_64]

    Google Scholar 

  • Pluim, J.P.W., Antoine Maintz, J.B., Viergever, M.A., 2004. f-Information measures in medical image registration. IEEE Trans. Med. Imag., 23(12):1508–1516. [doi:10.1109/TMI.2004.836872]

    Article  Google Scholar 

  • Rehman, T., Haber, E., Pryor, G., Melonakos, J., Tannenbaum, A., 2009. 3D nonrigid registration via optimal mass transport on the GPU. Med. Image Anal., 13(6):931–940. [doi:10.1016/j.media.2008.10.008]

    Article  Google Scholar 

  • Schnabel, J.A., Tanner, C., Castellano-Smith, A.D., Degenhard, A., Leach, M.O., Hose, D.R., Hill, D.L.G., Hawkes, D.J., 2008. Validation of nonrigid image registration using finite-element methods: application to breast MR images. IEEE Trans. Med. Imag., 22(3):238–247. [doi:10.1109/TMI.2002.808367]

    Google Scholar 

  • Thirion, J.P., 1998. Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal., 2(3):243–260. [doi:10.1016/S1361-8415(98)80022-4]

    Article  Google Scholar 

  • Wells, W.M., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R., 1996. Multi-modal volume registration by maximization of mutual information. Med. Image Anal., 1(1):35–51. [doi:10.1016/S1361-8415(01)80004-9]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Fredrik Westin.

Additional information

Project supported by the joint PhD Program of the China Scholarship Council (CSC), the US National Institutes of Health (NIH) (Nos. R01MH074794 and P41RR013218), and the National Natural Science Foundation of China (No. 60972102)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Yj., Farnebäck, G. & Westin, CF. Multi-affine registration using local polynomial expansion. J. Zhejiang Univ. - Sci. C 11, 495–503 (2010). https://doi.org/10.1631/jzus.C0910658

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C0910658

Key words

  • Deformable registration
  • Polynomial expansion
  • Least squares
  • Multi-affine
  • Normalized convolution

CLC number

  • TP391.4