Abstract
This paper describes a method based on an energy minimizing deformable model applied to the 3D biomechanical modeling of a set of organs considered as regions of interest (ROI) for radiotherapy. The initial model consists of a quadratic surface that is deformed to the exact contour of the ROI by means of the physical properties of a mass-spring system. The exact contour of each ROI is first obtained using a geodesic active contour model. The ROI is then parameterized by the vibration modes resulting from the deformation process. Once each structure has been defined, the method provides a 3D global model including the whole set of ROIs. This model allows one to describe statistically the most significant variations among its structures. Statistical ROI variations among a set of patients or through time can be analyzed. Experimental results are presented using the pelvic zone to simulate anatomical variations among structures and its application in radiotherapy treatment planning.
Similar content being viewed by others
References
Banik, S., Rangayyan, R., Boag, G., 2009. Landmarking and Segmentation of 3D CT Images. Springer Berlin Heidelberg. [doi:10.1007/s11548-009-0289-y]
Bueno, G., 2008. Fuzzy Systems and Deformable Models. In: Haas, O.C.L., Burnham, K.J. (Eds.), Intelligent and Adaptive Systems in Medicine, Chapter 10. Series in Medical Physics and Biomedical Engineering. Taylor & Francis Group, London, p.305–329.
Bueno, G., Fisher, M., Burnham, K., 2001. Automatic Segmentation of Clinical Structures for RTP: Evaluation of a Morphological Approach. Proc. Medical Image Understanding and Analysis, p.73–76.
Bueno, G., Martínez, A., Adán, A., 2004. Fuzzy snake segmentation of anatomical structures applied to CT images. LNCS, 3212:33–42.
Bueno, G., Déniz, O., Carrascosa, C., Delgado, J., Brualla, L., 2009. Fast Monte Carlo simulation on a voxelized human phantom deformed to a patient. Med. Phys., 36(11):5162–5174. [doi:10.1118/1.3245877]
Camapum, J., Silva, A., Freitas, A., Bassani, H., 2004. Segmentation of Clinical Structures from Images of the Human Pelvic Area. Proc. 17th Brazilian Symp. on Computer Graphics and Image Processing, p.10–16. [doi:10.1109/SIBGRA.2004.1352937]
Caselles, V., Kimmel, R., Sapiro, G., 1997. Geodesic active contours. Int. J. Comput. Vis., 22(1):61–79. [doi:10.1023/A:1007979827043]
Collier, D., Burnett, S., Amin, M., 2003. Assessment of consistency in contouring of normal-tissue anatomic structures. J. Appl. Clin. Med. Phys., 4(1):17–24. [doi:10.1120/1.1521271]
Costa, M., Delingette, H., Ayache, N., 2007. Automatic Segmentation of the Bladder Using Deformable Models. 4th IEEE Int. Symp on Biomedical Imaging: from Nano to Macro, p.904–907. [doi:10.1109/ISBI.2007.356999]
Déniz, O., Castrillón, M., Lorenzo, J., Antón, L., Hernandez, M., Bueno, G., 2010. Computer vision based eyewear selector. J. Zheijang Univ.-Sci. C (Comput. & Eletron.), 11(2):79–91. [doi:10.1631/jzus.C0910377]
Fisher, M., Su, Y., Aldridge, R., 2008. Some Applications of Intelligent Systems in Cancer Treatment: a Review. In: Haas, O.C.L., Burnham, K.J. (Eds.), Intelligent and Adaptive Systems in Medicine, Chapter 9. Series in Medical Physics and Biomedical Engineering. Taylor & Francis Group, London, p.283–303.
Foskey, M., Davis, B., Goyal, L., Chang, S., Chaney, E., Strehl, N., Tomei, S., Rosenman, J., Joshi, S., 2005. Large deformation three-dimensional image registration in image-guided radiation therapy. Phys. Med. Biol., 50(24):5869–5892. [doi:10.1088/0031-9155/50/24/008]
Gibou, F., Levy, D., Cádenas, C., 2005. Partial differential equations based segmentation for radiotherapy treatment planning. Math. Biosci. Eng., 2(2):209–226.
Haas, B., Coradi, T., Scholz, M., Kunz, P., Huber, M., Oppitz, U., André, L., Lengkeek, V., Huyskens, D., van Esch, A., et al., 2008. Assessment of consistency in contouring of normal-tissue anatomic structures. Phys. Med. Biol., 53(6):1751–1771. [doi:10.1088/0031-9155/53/6/017]
Kass, M., Witkin, A., Terzopoulos, D., 1988. Snakes: active contour models. Int. J. Comput. Vis., 1(4):321–331. [doi:10.1007/BF00133570]
Lee, C., Chung, P., 2004. Identifying Abdominal Organs Using Robust Fuzzy Inference Model. IEEE Int. Conf. on Networking, Sensing and Control, 2:1289–1294. [doi:10.1109/ICNSC.2004.1297133]
Lee, M., Park, S., Cho, W., Kim, S., Jeong, C., 2008. Segmentation of medical images using a geometric deformable model and its visualization. Can. J. Electr. Comput. Eng., 33(1):15–19. [doi:10. 1109/CJECE.2008.4621790]
Malladi, R., Sethian, J., Vemuri, B., 1995. Shape modeling with front propagation: a level set approach. IEEE Trans. PAMI, 17(4):158–175.
Mazonakis, M., Damilakis, J., Varveris, H., Prassopoulos, P., Gourtsoyiannis, N., 2001. Image segmentation in treatment planning for prostate cancer using the region growing technique. Br. J. Radiol., 74:243–249.
Nastar, C., Ayache, N., 1996. Frequency-based nonrigid motion analysis. IEEE Trans. PAMI, 18(11):1069–1079. [doi:10.1109/34.544076]
Nikou, C., Bueno, G., Heitz, F., Armspach, J., 2001. A joint physics-based statistical deformable model for multimodal brain image analysis. IEEE Trans. Med. Imag., 20(10):1026–1037. [doi:10.1109/42.959300]
Osher, S., Paragios, N., 2003. Geometric Level Set Methods in Imaging, Vision and Graphics. Springer-Verlag New York.
Paragios, N., 2002. A level set approach for shape driven segmentation and tracking of the left ventricle. IEEE Trans. Nucl. Sci., 21(3):21–43.
Pentland, A., Sclaroff, S., 1991. A closed-form solutions for physically-based shape modelling and recognition. IEEE Trans. PAMI, 13(7):730–742.
Ripoche, X., Atif, J., Osorio, A., 2004. A 3D Discrete Deformable Model Guided by Mutual Information for Medical Image Segmentation. Proc. Medical Imaging Conf., p.1–3.
Rousson, M., Khamene, A., Diallo, M., 2005. Constrained surface evolutions for prostate and bladder segmentation in CT images. LNCS, 3765:251–260. [doi:10.1007/11569541_26]
Shepp, L., Logan, B., 1974. The Fourier reconstruction of a head section. IEEE Trans. Med. Imag., 22(6):773–776.
Shi, F., Yang, J., Zhu, Y., 2009. Automatic segmentation of bladder in CT images. J. Zhejiang Univ.-Sci. A, 10(2):239–246. [doi:10.1631/jzus.A0820157]
Su, Y., Fisher, M., Rowland, R.S., 2007. Markerless intra-fraction organ motion tracking using hybrid ASM. Int. J. Comput. Assist. Radiol. Surg., 2(3–4):231–243. [doi:10.1007/s11548-007-0133-1]
Terzopoulos, D., Fleischer, K., 1988. Deformable models. The Vis. Comput., 4(6):306–331. [doi:10.1007/BF01908877]
Webb, S., 2006. Does elastic tissue intrafraction motion with density changes forbid motion-compensated radiotherapy? Phys. Med. Biol., 51(6):1449–1462. [doi:10.1088/0031-9155/51/6/006]
Author information
Authors and Affiliations
Corresponding author
Additional information
Project partially supported by the VI FP and VII FP of the European Commission through MAESTRO and ENVISION projects (Nos. IP CE503564 and SP CE241851) and Spanish Junta de Comunidades de Castilla-La Mancha (Nos. PBC06-0019 and PI-2006/01.1)
Rights and permissions
About this article
Cite this article
Bueno, G., Déniz, O., salido, J. et al. Three-dimensional organ modeling based on deformable surfaces applied to radio-oncology. J. Zhejiang Univ. - Sci. C 11, 407–417 (2010). https://doi.org/10.1631/jzus.C0910402
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.C0910402
Key words
- 3D biomechanical organ modeling
- Energy minimizing deformable model
- Finite element model
- Geodesic active contour
- Radiotherapy treatment planning