Congestion avoidance, detection and alleviation in wireless sensor networks

  • Wei-wei FangEmail author
  • Ji-ming Chen
  • Lei Shu
  • Tian-shu Chu
  • De-pei Qian


Congestion in wireless sensor networks (WSNs) not only causes severe information loss but also leads to excessive energy consumption. To address this problem, a novel scheme for congestion avoidance, detection and alleviation (CADA) in WSNs is proposed in this paper. By exploiting data characteristics, a small number of representative nodes are chosen from those in the event area as data sources, so that the source traffic can be suppressed proactively to avoid potential congestion. Once congestion occurs inevitably due to traffic mergence, it will be detected in a timely way by the hotspot node based on a combination of buffer occupancy and channel utilization. Congestion is then alleviated reactively by either dynamic traffic multiplexing or source rate regulation in accordance with the specific hotspot scenarios. Extensive simulation results under typical congestion scenarios are presented to illuminate the distinguished performance of the proposed scheme.

Key words

Wireless sensor network (WSN) Congestion control Correlation Traffic multiplexing Rate regulation 

CLC number



  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E., 2002. A survey on sensor network. IEEE Commun. Mag., 40(8):102–114. [doi:10.1109/MCOM.2002.1024422]CrossRefGoogle Scholar
  2. Akan, O.B., Akyildiz, I.F., 2005. Event-to-sink reliable transport in wireless sensor networks. IEEE Trans. Network., 13(5):1003–1016. [doi:10.1109/TNET.2005. 857076]CrossRefGoogle Scholar
  3. Berger, J.O., Oliveira, V.D., Sanso, B., 2001. Objective Bayesian analysis of spatially correlated data. J. Am. Statist. Assoc., 96(456):1361–1374. [doi:10.1198/016214501753382282]zbMATHCrossRefGoogle Scholar
  4. Casella, G., Berger, R.L., 2001. Statistical Inference. Duxbury Press, CA, USA, p.139–203.Google Scholar
  5. Chen, L., Szymanski, B.K., Branch, J.W., 2008. Quality-Driven Congestion Control for Target Tracking in Wireless Sensor Networks. Proc. 5th IEEE Int. Conf. on Mobile Ad Hoc and Sensor Systems, p.766–771. [doi:10.1109/MAHSS.2008.4660115]Google Scholar
  6. Chen, L.J., Low, S.H., Chiang, M., Doyle, J.C., 2006. Cross-Layer Congestion Control, Routing and Scheduling Design in Ad Hoc Wireless Networks. Proc. 25th Int. Conf. on Computer Communications, p.1–13. [doi:10.1109/INFOCOM.2006.142]Google Scholar
  7. Chen, W.P., Hou, J.C., Sha L., 2004. Dynamic clustering for acoustic target tracking in wireless sensor networks. IEEE Trans. Mob. Comput., 3(3):258–271. [doi:10.1109/TMC.2004.22]CrossRefGoogle Scholar
  8. Cheng, T.E., Bajcsy, R., 2004. Congestion Control and Fairness for Many-to-One Routing in Sensor Networks. Proc. 2nd Int. Conf. on Embedded Networked Sensor Systems, p.148–161. [doi:10.1145/1031495.1031513]Google Scholar
  9. Das, A., Dutta, D., 2005. Data acquisition in multiple-sink sensor networks. ACM Mob. Comput. Commun. Rev., 9(3):82–85. [doi:10.1145/1094549.1094561]CrossRefGoogle Scholar
  10. Du, Z.G., Tong, J., Huang, J.H., Su, Y.M., Yang, X.B., Qian, H.H., Fang, W.W., Wu, J.F., Liu, Y., Qian, D.P., 2007. ProNet: A Wireless Sensor Network Testbed Supporting Performance Measurement and Background Traffic Generation. Proc. 2nd Int. Conf. on the Latest Advances in Networks, p.185–190.Google Scholar
  11. Eisenman, S.B., Campbell, A.T., 2007. E-CSMA: Supporting Enhanced CSMA Performance in Experimental Sensor Networks Using Per-Neighbor Transmission Probability Thresholds. Proc. 26th Int. Conf. on Computer Communications, p.1208–1216. [doi:10.1109/INFCOM.2007.144]Google Scholar
  12. Fang, W.W., Qian, D.P., Liu, Y., 2008. Transmission control protocols for wireless sensor networks. J. Software, 19(6):1439–1451 (in Chinese). [doi:10.3724/SP.J.1001.2008.01439]CrossRefGoogle Scholar
  13. Galluccio, L., Campbell, A., Palazzo, S., 2005. CONCERT: Aggregation-Based Congestion Control for Sensor Networks. Proc. 3rd Int. Conf. on Embedded Networked Sensor Systems, p.274–275. [doi:10.1145/1098918.1098951]Google Scholar
  14. Gedik, B., Liu, L., Yu, P.S., 2007. ASAP: an adaptive sampling approach to data collection in sensor networks. IEEE Trans. Parall. Distr. Syst., 18(12):1766–1783. [doi:10.1109/TPDS.2007.1110]CrossRefGoogle Scholar
  15. Gupta, P., Kumar, P.R., 2000. The capacity of wireless networks. IEEE Trans. Inf. Theory, 46(2):388–404. [doi:10.1109/18.825799]zbMATHCrossRefMathSciNetGoogle Scholar
  16. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H., 2002. IEEE Trans. Wirel. Commun., 1(4):660–670. [doi:10.1109/TWC.2002.804190]CrossRefGoogle Scholar
  17. Hull, B., Jamieson, K., Balakrishnan, H., 2004. Mitigating Congestion in Wireless Sensor Networks. Proc. 2nd Int. Conf. on Embedded Networked Sensor Systems, p.134–147. [doi:10.1145/1031495.1031512]Google Scholar
  18. Jain, K., Padhye, J., Padmanabhan, V.N., Qiu, L.L., 2003. Impact of Interference on Multi-Hop Wireless Network Performance. Proc. 9th Annual Int. Conf. on Mobile Computing and Networking, p.66–80. [doi:10.1145/938985.938993]Google Scholar
  19. Kang, J., Zhang, Y.Y., Nath, B., 2007. TARA: topology-aware resource adaption to alleviate congestion in sensor networks. IEEE Trans. Parall. Distr. Syst., 18(7):919–931. [doi:10.1109/TPDS.2007.1030]CrossRefGoogle Scholar
  20. Kumar, R., Crepaldi, R., Rowaihy, H., Harris, A.F., Cao, G.H., Zorzi, M., Porta, L.T., 2008. Mitigating performance degradation in congested sensor networks. IEEE Trans. Mob. Comput., 7(6):682–697. [doi:10.1109/TMC.2008.20]CrossRefGoogle Scholar
  21. Liu, C., Wu, K., Pei, J., 2007. An energy-efficient data collection framework for wireless sensor networks by exploiting spatiotemporal correlation. IEEE Trans. Parall. Distr. Syst., 18(7):1010–1023. [doi:10.1109/TPDS.2007.1046]CrossRefGoogle Scholar
  22. Misra, S., Tiwari, V., Obaidat, M., 2009. LACAS: learning automata-based congestion avoidance scheme for healthcare wireless sensor networks. IEEE J. Sel. Areas Commun., 27(4):466–479. [doi:10.1109/JSAC.2009.090510]CrossRefGoogle Scholar
  23. Popa, L., Raiciu, C., Stoica, I., Rosenblum, D., 2006. Reducing Congestion Effects in Wireless Networks by Multipath Routing. Proc. IEEE Int. Conf. on Network Protocols, p.96–105. [doi:10.1109/ICNP.2006.320202]Google Scholar
  24. Teo, J.Y., Ha, Y.J., Tham, C.K., 2008. Interference-minimized multipath routing with congestion control in wireless sensor network for high-rate streaming. IEEE Trans. Mob. Comput., 7(9):1124–1137. [doi:10.1109/TMC.2008.24]CrossRefGoogle Scholar
  25. Vuran, M.C., Akyildiz, I.F., 2006. Spatial correlation-based collaborative medium access control in wireless sensor networks. IEEE Trans. Network., 14(2):316–329. [doi:10.1109/TENT.2006.872544]CrossRefGoogle Scholar
  26. Wan, C.Y., Eisenman, S.B., Campbell, A.T., 2003. CODA: Congestion Detection and Avoidance in Sensor Networks. Proc. 1st Int. Conf. on Embedded Networked Sensor Systems, p.266–279. [doi:10.1145/958491.958523]Google Scholar
  27. Wan, C.Y., Eisenman, S.B., Campbell, A.T., Crowcroft, J., 2005. Siphon: Overload Traffic Management Using Multi-Radio Virtual Sinks in Sensor Networks. Proc. 3rd Int. Conf. on Embedded Networked Sensor Systems, p.116–129. [doi:10.1145/1098918.1098931]Google Scholar
  28. Yu, Y.Q., Giannakis, G.B., 2009. Cross-layer congestion and contention control for wireless ad hoc networks. IEEE Trans. Wirel. Commun., 1(7):37–42. [doi:10.1109/TWC.2008.060514]Google Scholar
  29. Zhao, M., Chen, Z.G., Zhang, L., Ge, Z.H., 2007. HS-Sift: hybrid spatial correlation-based medium access control for event-driven sensor networks. IET Commun., 1(6):1126–1132. [doi:10.1049/iet-com:20060128]CrossRefGoogle Scholar
  30. Zhang, Q., Yang, X.L., Zhou, Y.M., Wang, L.R., Guo, X.S., 2007. A wireless solution for greenhouse monitoring and control system based on ZigBee technology. J Zhejiang Univ. Sci A, 8(10):1584–1587. [doi:10.1631/jzus.2007.A1584]CrossRefGoogle Scholar
  31. Zhou, Y.F., Lyu, R.M., Liu, J.C., Wang, H., 2005. PORT: A Price-Oriented Reliable Transport Protocol for Wireless Sensor Networks. Proc. 16th IEEE Int. Symp. on Software Reliability Engineering, p.117–126. [doi:10.1109/ISSRE.2005.32]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and “Journal of Zhejiang University Science” Editorial Office 2010

Authors and Affiliations

  • Wei-wei Fang
    • 1
    Email author
  • Ji-ming Chen
    • 2
  • Lei Shu
    • 3
  • Tian-shu Chu
    • 1
  • De-pei Qian
    • 1
  1. 1.Sino-German Joint Software Institute, School of Computer ScienceBeihang UniversityBeijingChina
  2. 2.State Key Laboratory of Industrial Control TechnologyZhejiang UniversityHangzhouChina
  3. 3.Digital Enterprise Research InstituteNational University of IrelandGalwayIreland

Personalised recommendations