Skip to main content

Application of extracorporeal therapies in critically ill COVID-19 patients

体外疗法在重症COVID-19患者中的应用

Abstract

The coronavirus disease 2019 (COVID-19) pandemic is a major public health event caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has spread widely all over the world. A high proportion of patients become severely or critically ill, and suffer high mortality due to respiratory failure and multiple organ dysfunction. Therefore, providing timely and effective treatment for critically ill patients is essential to reduce overall mortality. Convalescent plasma therapy and pharmacological treatments, such as aerosol inhalation of interferon-α (IFN-α), corticosteroids, and tocilizumab, have all been applied in clinical practice; however, their effects remain controversial. Recent studies have shown that extracorporeal therapies might have a potential role in treating critically ill COVID-19 patients. In this review, we examine the application of continuous renal replacement therapy (CRRT), therapeutic plasma exchange (TPE), hemoadsorption (HA), extracorporeal membrane oxygenation (ECMO), and extracorporeal carbon dioxide removal (ECCO2R) in critically ill COVID-19 patients to provide support for the further diagnosis and treatment of COVID-19.

概要

新型冠状病毒型肺炎(COVID-19)大流行是由严重急性呼吸系统综合症冠状病毒2(SARS-CoV-2)引起的重大公共卫生事件. COVID-19已在世界各地广泛传播. 很大比例的患者因呼吸衰竭和多器官功能障碍而发展为重症或危重症, 并且死亡率很高 .因此, 为危重患者提供及时有效的治疗对于降低总体死亡率至关重要. 恢复期血浆治疗, 干扰素-α(IFN-α)、 皮质类固醇和托珠单抗的气雾吸入等药物治疗均已应用于临床治疗, 但其效果仍存在争议. 最近的研究表明, 体外疗法可能在治疗COVID-19危重患者方面发挥潜在作用. 在这篇综述中, 我们阐述了连续性肾脏替代疗法(CRRT)、 治疗性血浆置换(TPE)、 血液吸附(HA)、 体外膜肺氧合(ECMO)和体外二氧化碳清除(ECCO2R)在重症COVID-19患者中的应用, 为COVID-19的进一步诊断和治疗提供支持.

References

  1. Adapa S, Aeddula NR, Konala VM, et al., 2020. COVID-19 and renal failure: challenges in the delivery of renal replacement therapy. J Clin Med Res, 12(5):276–285. https://doi.org/10.14740/jocmr4160

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. Adeli SH, Asghari A, Tabarraii R, et al., 2020. Therapeutic plasma exchange as a rescue therapy in patients with coronavirus disease 2019: a case series. Pol Arch Intern Med, 130(5):455–458. https://doi.org/10.20452/pamw.15340

    PubMed  Google Scholar 

  3. Akkanti B, Jagpal S, Darwish R, et al., 2021. Physiologic improvement in respiratory acidosis using extracorporeal CO2 removal with hemolung respiratory assist system in the management of severe respiratory failure from coronavirus disease 2019. Crit Care Explor, 3(3):e0372. https://doi.org/10.1097/cce.0000000000000372

    PubMed  PubMed Central  Article  Google Scholar 

  4. Al-Fares A, Pettenuzzo T, del Sorbo L, 2019. Extracorporeal life support and systemic inflammation. Intens Care Med Exp, 7(S1):46. https://doi.org/10.1186/s40635-019-0249-y

    Article  Google Scholar 

  5. Alharthy A, Faqihi F, Memish ZA, et al., 2021. Continuous renal replacement therapy with the addition of cytosorb cartridge in critically ill patients with COVID-19 plus acute kidney injury: a case-series. Artif Organs, 45(5): E101–E112. https://doi.org/10.1111/aor.13864

    CAS  PubMed  Article  Google Scholar 

  6. Asgharpour M, Mehdinezhad H, Bayani M, et al., 2020. Effectiveness of extracorporeal blood purification (hemoadsorption) in patients with severe coronavirus disease 2019 (COVID-19). BMC Nephrol, 21:356. https://doi.org/10.1186/s12882-020-02020-3

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Atan R, Peck LC, Prowle J, et al., 2018. Adouble-blind randomized controlled trial of high cutoff versus standard hemofiltration in critically ill patients with acute kidney injury. Crit Care Med, 46(10):e988–e994. https://doi.org/10.1097/ccm.0000000000003350

    PubMed  Article  Google Scholar 

  8. Attallah N, Gupta S, Madhyastha R, et al., 2021. Anticoagulation in COVID-19 patients requiring continuous renal replacement therapy. Anaesth Crit Care Pain Med, 40(3): 100841. https://doi.org/10.1016/j.accpm.2021.100841

    PubMed  PubMed Central  Article  Google Scholar 

  9. Azoulay E, Zafrani L, Mirouse A, et al., 2020. Clinical phenotypes of critically ill COVID-19 patients. Intensive Care Med, 46:1651–1652. https://doi.org/10.1007/s00134-020-06120-4

    CAS  PubMed  Article  Google Scholar 

  10. Berhés M, Fábián Á, László I, et al., 2020. Organ replacement therapy and life-supporting treatment modalities in critically ill COVID-19 patients. Orv Hetil, 161(17):704–709. https://doi.org/10.1556/650.2020.31813

    PubMed  Article  Google Scholar 

  11. Bhatraju PK, Ghassemieh BJ, Nichols M, et al., 2020. COVID-19 in critically ill patients in the seattle region—case series. N Engl J Med, 382(21):2012–2022. https://doi.org/10.1056/NEJMoa2004500

    CAS  PubMed  Article  Google Scholar 

  12. Burke E, Haber E, Pike CW, et al., 2021. Outcomes of renal replacement therapy in the critically ill with COVID-19. Med Intensiva, 45(6):325–331. https://doi.org/10.1016/j.medin.2021.02.004

    PubMed  PubMed Central  Article  Google Scholar 

  13. Camboni D, Philip A, Schmid C, et al., 2019. Double, triple and quadruple cannulation for veno-arterial extracorporeal membrane oxygenation support: is there a limit? Ann Cardiothorac Surg, 8(1):151–159. https://doi.org/10.21037/acs.2019.01.03

    PubMed  PubMed Central  Article  Google Scholar 

  14. Capone S, Abramyan S, Ross B, et al., 2020. Characterization of critically ill COVID-19 patients at a Brooklyn safety-net hospital. Cureus, 12(8):e9809. https://doi.org/10.7759/cureus.9809

    PubMed  PubMed Central  Google Scholar 

  15. Cha RH, Joh JS, Jeong I, et al., 2015. Renal complications and their prognosis in Korean patients with middle east respiratory syndrome-coronavirus from the central MERS-CoV designated hospital. J Korean Med Sci, 30(12): 1807–1814. https://doi.org/10.3346/jkms.2015.30.12.1807

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Chen Y, Wang SH, Huang JR, et al., 2021. Application of extracorporeal carbon dioxide removal combined with continuous blood purification therapy in ARDS with hypercapnia in patients with critical COVID-19. Clin Hemorheol Microcirc, 78(2):199–207. https://doi.org/10.3233/ch-201080

    CAS  PubMed  Article  Google Scholar 

  17. Cheng YC, Luo R, Wang K, et al., 2020. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int, 97(5):829–838. https://doi.org/10.1016/j.kint.2020.03.005

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Chinese Society of Nephrology, Professional Committee of Nephrology, 2020. Expert consensus on special blood purification technics in patients with corona virus disease 2019. Chin J Intern Med, 59(11):847–853 (in Chinese). https://doi.org/10.3760/cma.j.cn112138-20200306-00202

    Google Scholar 

  19. Chua HR, MacLaren G, Choong LHL, et al., 2020. Ensuring sustainability of continuous kidney replacement therapy in the face of extraordinary demand: lessons from the COVID-19 pandemic. Am J Kidney Dis, 76(3):392–400. https://doi.org/10.1053/j.ajkd.2020.05.008

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Colaneri M, Valsecchi P, Perotti L, et al., 2020. Running out of bullets: the challenging management of acute hepatitis and SARS-COV-2 from the SMatteo COvid19 Registry (SMACORE). Liver Int, 40(11):2655–2659. https://doi.org/10.1111/liv.14609

    CAS  PubMed  Article  Google Scholar 

  21. Combes A, Schmidt M, Hodgson CL, et al., 2020. Extracorporeal life support for adults with acute respiratory distress syndrome. Intensive Care Med, 46:2464–2476. https://doi.org/10.1007/s00134-020-06290-1

    CAS  PubMed  Article  Google Scholar 

  22. Daoud AM, Soliman KM, Ali HK, 2021. Potential limitations of plasmapheresis in treatment of COVID-19 patients: how to overcome them? Ther Apher Dial, 25(3):350. https://doi.org/10.1111/1744-9987.13568

    CAS  PubMed  Article  Google Scholar 

  23. Dastan F, Saffaei A, Mortazavi SM, et al., 2020. Continues renal replacement therapy (CRRT) with disposable hemoperfusion cartridge: a promising option for severe COVID-19. J Glob Antimicrob Resist, 21:340–341. https://doi.org/10.1016/j.jgar.2020.04.024

    PubMed  PubMed Central  Article  Google Scholar 

  24. Deep A, Bansal M, Ricci Z, 2021. Acute kidney injury and special considerations during renal replacement therapy in children with coronavirus disease-19: perspective from the critical care nephrology section of the European Society of Paediatric and Neonatal Intensive Care. Blood Purif, 50(2):150–160. https://doi.org/10.1159/000509677

    CAS  PubMed  Google Scholar 

  25. Diamanti AP, Rosado MM, Pioli C, et al., 2020. Cytokine release syndrome in COVID-19 patients, a new scenario for an old concern: the fragile balance between infections and autoimmunity. Int J Mol Sci, 21(9):3330. https://doi.org/10.3390/ijms21093330

    CAS  Article  Google Scholar 

  26. Din MAU, Boppana LKT, 2020. An update on the 2019-nCoV outbreak. Am J Infect Control, 48(6):713. https://doi.org/10.1016/j.ajic.2020.01.023

    Article  Google Scholar 

  27. Doher MP, de Carvalho FRT, Scherer PF, et al., 2021. Acute kidney injury and renal replacement therapy in critically ill COVID-19 patients: risk factors and outcomes: a single-center experience in Brazil. Blood Purif, 50(4–5):520–530. https://doi.org/10.1159/000513425

    CAS  PubMed  Article  Google Scholar 

  28. Dong MZ, Zhang J, Ma XF, et al., 2020. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed Pharmacother, 131:110678. https://doi.org/10.1016/j.biopha.2020.110678

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Faqihi F, Alharthy A, Alodat M, et al., 2020. Therapeutic plasma exchange in adult critically ill patients with life-threatening SARS-CoV-2 disease: a pilot study. J Crit Care, 60:328–333. https://doi.org/10.1016/j.jcrc.2020.07.001

    CAS  PubMed  Article  Google Scholar 

  30. Fardet L, Fève B, 2014. Systemic glucocorticoid therapy: a review of its metabolic and cardiovascular adverse events. Drugs, 74(15):1731–1745. https://doi.org/10.1007/s40265-014-0282-9

    CAS  PubMed  Article  Google Scholar 

  31. Fayad AI, Buamscha DG, Ciapponi A, 2016. Intensity of continuous renal replacement therapy for acute kidney injury. Cochrane Database Syst Rev, 10(10):CD010613. https://doi.org/10.1002/14651858.CD010613.pub2

    PubMed  Google Scholar 

  32. Fernandez J, Gratacos-Ginès J, Olivas P, et al., 2020. Plasma exchange: an effective rescue therapy in critically ill patients with coronavirus disease 2019 infection. Crit Care Med, 48(12):e1350–e1355. https://doi.org/10.1097/ccm.0000000000004613

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Fu D, Yang B, Xu J, et al., 2020. COVID-19 infection in a patient with end-stage kidney disease. Nephron, 144(5): 245–247. https://doi.org/10.1159/000507261

    CAS  PubMed  Article  Google Scholar 

  34. García LF, 2020. Immune response, inflammation, and the clinical spectrum of COVID-19. Front Immunol, 11:1441. https://doi.org/10.3389/fimmu.2020.01441

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. Grazioli A, Athale J, Tanaka K, et al., 2020. Perioperative applications of therapeutic plasma exchange in cardiac surgery: a narrative review. J Cardiothorac Vasc Anesth, 34(12):3429–3443. https://doi.org/10.1053/j.jvca.2020.0L054

    PubMed  Article  Google Scholar 

  36. Guan WJ, Ni ZY, Hu Y, et al., 2020. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 382(18): 1708–1720. https://doi.org/10.1056/NEJMoa2002032

    CAS  PubMed  Article  Google Scholar 

  37. Gucyetmez B, Atalan HK, Sertdemir I, et al., 2020. Therapeutic plasma exchange in patients with COVID-19 pneumonia in intensive care unit: a retrospective study. Crit Care, 24:492. https://doi.org/10.1186/s13054-020-03215-8

    PubMed  PubMed Central  Article  Google Scholar 

  38. Haase M, Bellomo R, Baldwin I, et al., 2007. Hemodialysis membrane with a high-molecular-weight cutoff and cytokine levels in sepsis complicated by acute renal failure: a phase 1 randomized trial. Am J Kidney Dis, 50(2):296–304. https://doi.org/10.1053/j.ajkd.2007.05.003

    CAS  PubMed  Article  Google Scholar 

  39. Hazzard I, Jones S, Quinn T, 2015. Coupled plasma haemofiltration filtration in severe sepsis: systematic review and meta-analysis. J R Army Med Corps, 161 (S1):i17–i22. https://doi.org/10.1136/jramc-2015-000552

    PubMed  Article  PubMed Central  Google Scholar 

  40. Hoffmann M, Kleine-Weber H, Schroeder S, et al., 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2):271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Honore PM, Mugisha A, Kugener L, et al., 2020. Therapeutic plasma exchange as a routine therapy in septic shock and as an experimental treatment for COVID-19: we are not sure. Crit Care, 24:226. https://doi.org/10.1186/s13054-020-02943-1

    PubMed  PubMed Central  Article  Google Scholar 

  42. Huang CL, Wang YM, Li XW, et al., 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223):497–506. https://doi.org/10.1016/s0140-6736(20)30183-5

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Husain-Syed F, Birk HW, Wilhelm J, et al., 2020. Extracorporeal carbon dioxide removal using a renal replacement therapy platform to enhance lung-protective ventilation in hypercapnic patients with coronavirus disease 2019-associated acute respiratory distress syndrome. Front Med, 7:598379. https://doi.org/10.3389/fmed.2020.598379

    Article  Google Scholar 

  44. Izda V, Jeffries MA, Sawalha AH, 2021. COVID-19: a review of therapeutic strategies and vaccine candidates. Clin Immunol, 222:108634. https://doi.org/10.1016/j.clim.2020.108634

    CAS  PubMed  Article  Google Scholar 

  45. Jaiswal V, Nasa P, Raouf M, et al., 2021. Therapeutic plasma exchange followed by convalescent plasma transfusion in critical COVID-19-an exploratory study. Int J Infect Dis, 102:332–334. https://doi.org/10.1016/j.ijid.2020.10.085

    CAS  PubMed  Article  Google Scholar 

  46. Jin YH, Cai L, Cheng ZS, et al., 2020. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res, 7:4. https://doi.org/10.1186/s40779-020-0233-6

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Joannes-Boyau O, Honoré PM, Perez P, et al., 2013. Highvolume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med, 39:1535–1546. https://doi.org/10.1007/s00134-013-2967-z

    PubMed  Article  Google Scholar 

  48. Jonckheer J, Spapen H, Debain A, et al., 2019. CO2 and O2 removal during continuous veno-venous hemofiltration: a pilot study. BMC Nephrol, 20:222. https://doi.org/10.1186/s12882-019-1378-y

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. Kade G, Spaleniak S, Antosiewicz S, 2020. Continuous renal replacement therapy as a treatment of selected acute intoxications. Pol Merkur Lekarski, 49(286):250–254.

    PubMed  Google Scholar 

  50. Kamran SM, Mirza ZEH, Naseem A, et al., 2021. Therapeutic plasma exchange for coronavirus disease-2019 triggered cytokine release syndrome; a retrospective propensity matched control study. PLoS ONE, 16(1):e0244853. https://doi.org/10.1371/journal.pone.0244853

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Katagiri D, Ishikane M, Ogawa T, et al., 2021a. Continuous renal replacement therapy for a patient with severe COVID-19. Blood Purif, 50(1):129–131. https://doi.org/10.1159/000508062

    CAS  PubMed  Article  Google Scholar 

  52. Katagiri D, Ishikane M, Asai Y, et al., 2021b. Direct hemoper-fusion using a polymyxin B-immobilized polystyrene column for COVID-19. J Clin Apher, 36(3):313–321. https://doi.org/10.1002/jca.21861

    PubMed  Article  Google Scholar 

  53. Khamis F, Al-Zakwani I, al Hashmi S, et al., 2020. Therapeutic plasma exchange in adults with severe COVID-19 infection. Int J Infect Dis, 99:214–218. https://doi.org/10.1016/j.ljid.2020.06.064

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Kox M, Waalders NJB, Kooistra EJ, et al., 2020. Cytokine levels in critically ill patients with COVID-19 and other conditions. JAMA, 324(15):1565–1567. https://doi.org/10.1001/jama.2020.17052

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  55. Li L, Li RR, Wu ZX, et al., 2020. Therapeutic strategies for critically ill patients with COVID-19. Ann Intensive Care, 10:45. https://doi.org/10.1186/s13613-020-00661-z

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Li Q, Guan XH, Wu P, et al., 2020. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med, 382(13):1199–1207. https://doi.org/10.1056/NEJMoa2001316

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Lin JH, Chen YC, Lu CL, et al., 2020. Application of plasma exchange in association with higher dose CVVH in Cytokine Storm Complicating COVID-19. J Formos Med Assoc, 119(6):1116–1118. https://doi.org/10.1016/j.jfma.2020.04.023

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Lu RJ, Zhao X, Li J, et al., 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395(10224):565–574. https://doi.org/10.1016/s0140-6736(20)30251-8

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Luo S, Yang LJ, Wang C, et al., 2020. Clinical observation of 6 severe COVID-19 patients treated with plasma exchange or tocilizumab. J Zhejiang Univ (Med Sci), 49(2): 227–231 (in Chinese). https://doi.org/10.3785/j.issn.1008-9292.2020.03.06

    Google Scholar 

  60. Ma XC, Liang ML, Ding M, et al., 2020. Extracorporeal membrane oxygenation (ECMO) in critically ill patients with coronavirus disease 2019 (COVID-19) pneumonia and acute respiratory distress syndrome (ARDS). Med Sci Monit, 26:e925364. https://doi.org/10.12659/msm.925364

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mair-Jenkins J, Saavedra-Campos M, Baillie JK, et al., 2015. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis, 211(1):80–90. https://doi.org/10.1093/infdis/jiu396

    CAS  PubMed  Article  Google Scholar 

  62. Menon R, Otto EA, Sealfon R, et al., 2020. SARS-CoV-2 receptor networks in diabetic and COVID-19 associated kidney disease. Kidney Int, 98(6):1502–1518. https://doi.org/10.1016/j.kint.2020.09.015

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Moradi H, Abbasi S, 2020. Hemoperfusion as a supportive treatment in a COVID-19 patient with late pulmonary thromboembolism: a case report. Int Med Case Rep J, 13:341–345. https://doi.org/10.2147/imcrj.S263127

    PubMed  PubMed Central  Article  Google Scholar 

  64. Na KR, Kim HR, Ham Y, et al., 2020. Acute kidney injury and kidney damage in COVID-19 patients. J Korean Med Sci, 35(28):e257. https://doi.org/10.3346/jkms.2020.35.e257

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Nachtigall I, Lenga P, Jóźwiak K, et al., 2020. Clinical course and factors associated with outcomes among 1904 patients hospitalized with COVID-19 in Germany: an observational study. Clin Microbiol Infect, 26(12):1663–1669. https://doi.org/10.1016/j.cmi.2020.08.011

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Nadim MK, Forni LG, Mehta RL, et al., 2020. COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nat Rev Nephrol, 16(12):747–764. https://doi.org/10.1038/s41581-020-00356-5

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ñamendys-Silva SA, 2020. ECMO for ARDS due to COVID-19. Heart Lung, 49(4):348–349. https://doi.org/10.1016/j.hrtlng.2020.03.012

    PubMed  PubMed Central  Article  Google Scholar 

  68. Napp LC, Kühn C, Hoeper MM, et al., 2016. Cannulation strategies for percutaneous extracorporeal membrane oxygenation in adults. Clin Res Cardiol, 105(4):283–296. https://doi.org/10.1007/s00392-015-0941-1

    CAS  PubMed  Article  Google Scholar 

  69. Pan PH, Song C, Lu RL, 2020. The timing of continuous renal replacement therapy in severe COVID-19. Chin J Tuberc Respir Dis, 43(9):721–724 (in Chinese). https://doi.org/10.3760/cma.j.cn112147-20200521-00621

    CAS  Google Scholar 

  70. Parasher A, 2021. COVID-19: current understanding of its pathophysiology, clinical presentation and treatment. Postgrad Med J, 97(1147):312–320. https://doi.org/10.1136/postgradmedj-2020-138577

    PubMed  Article  Google Scholar 

  71. Post A, den Deurwaarder ESG, Bakker SJL, et al., 2020. Kidney infarction in patients with COVID-19. Am J Kidney Dis, 76(3):431–435. https://doi.org/10.1053/j.ajkd.2020.05.004

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Pourahmad R, Moazzami B, Rezaei N, 2020. Efficacy of plasmapheresis and immunoglobulin replacement therapy (IVIG) on patients with COVID-19. SN Compr Clin Med, 2(9): 1407–1411. https://doi.org/10.1007/s42399-020-00438-2

    CAS  Article  Google Scholar 

  73. Ramirez-Sandoval JC, Gaytan-Arocha JE, Xolalpa-Chávez P, et al., 2021. Prolonged intermittent renal replacement therapy for acute kidney injury in COVID-19 patients with acute respiratory distress syndrome. Blood Purif, 50(3):355–363. https://doi.org/10.1159/000510996

    CAS  PubMed  Article  Google Scholar 

  74. Rampino T, Gregorini M, Perotti L, et al., 2020. Hemoperfusion with cytosorb as adjuvant therapy in critically ill patients with SARS-CoV2 pneumonia. Blood Purif, 50:566–571. https://doi.org/10.1159/000511725

    PubMed  Article  CAS  Google Scholar 

  75. RECOVERY Collaborative Group, 2021. Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial. Lancet, 397(10289):2049–2059. https://doi.org/10.1016/s0140-6736(21)00897-7

    Article  Google Scholar 

  76. Ronco C, Belomo R, Homel P, et al., 2002. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. EDTNA-ERCA J, 28(S2):7–12. https://doi.org/10.1111/j.1755-6686.2002.tb00248.x

    Article  Google Scholar 

  77. Ronco C, Bagshaw SM, Bellomo R, et al., 2021. Extracorporeal blood purification and organ support in the critically ill patient during COVID-19 pandemic: expert review and recommendation. Blood Purif, 50(1):17–27. https://doi.org/10.1159/000508125

    CAS  PubMed  Article  Google Scholar 

  78. Rothan HA, Byrareddy SN, 2020. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun, 109:102433. https://doi.org/10.1016/j.jaut.2020.102433

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Safari S, Salimi A, Zali A, et al., 2020. Extracorporeal hemoperfusion as a potential therapeutic option for severe COVID-19 patients; a narrative review. Arch Acad Emerg Med, 8(1):e67.

    PubMed  PubMed Central  Google Scholar 

  80. Schefold JC, von Haehling S, Corsepius M, et al., 2007. A novel selective extracorporeal intervention in sepsis. Shock, 28(4):418–425. https://doi.org/10.1097/shk.0b013e31804f5921

    CAS  PubMed  Article  Google Scholar 

  81. Schmidt M, Jaber S, Zogheib E, et al., 2018. Feasibility and safety of low-flow extracorporeal CO2 removal managed with a renal replacement platform to enhance lung-protective ventilation of patients with mild-to-moderate ARDS. Crit Care, 22:122. https://doi.org/10.1186/s13054-018-2038-5

    PubMed  PubMed Central  Article  Google Scholar 

  82. Shen CG, Wang ZQ, Zhao F, et al., 2020. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA, 323(16):1582–1589. https://doi.org/10.1001/jama.2020.4783

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Shi H, Zhou CM, He PH, et al., 2020. Successful treatment with plasma exchange followed by intravenous immunoglobulin in a critically ill patient with COVID-19. Int J Antimicrob Agents, 56(2):105974. https://doi.org/10.1016/j.ijantimicag.2020.105974

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Shi Y, Wang G, Cai XP, et al., 2020. An overview of COVID-19. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(5): 343–360. https://doi.org/10.1631/jzus.B2000083

    CAS  Article  Google Scholar 

  85. Smolander J, Bruchfeld A, 2020. COVID-19 and kidney disease. Lakartidningen, 117:20110 (in Swedish).

    PubMed  Google Scholar 

  86. Stahl K, Schmidt JJ, Seeliger B, et al., 2020a. Effect of therapeutic plasma exchange on endothelial activation and coagulation-related parameters in septic shock. Crit Care, 24:71. https://doi.org/10.1186/s13054-020-2799-5

    PubMed  PubMed Central  Article  Google Scholar 

  87. Stahl K, Bode C, David S, 2020b. First do no harm—beware the risk of therapeutic plasma exchange in severe COVID-19. Crit Care, 24:363. https://doi.org/10.1186/s13054-020-03070-7

    PubMed  PubMed Central  Article  Google Scholar 

  88. Tandukar S, Palevsky PM, 2019. Continuous renal replacement therapy: who, when, why, and how. Chest, 155(3): 626–638. https://doi.org/10.1016/j.chest.2018.09.004

    CAS  PubMed  Article  Google Scholar 

  89. The RENAL Replacement Therapy Study Investigators, 2009. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med, 361(17):1627–1638. https://doi.org/10.1056/NEJMoa0902413

    Article  Google Scholar 

  90. The VA/NIH Acute Renal Failure Trial Network, 2008. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med, 359(1):7–20. https://doi.org/10.1056/NEJMoa0802639

    PubMed Central  Article  PubMed  Google Scholar 

  91. Tully RP, Hopley N, Lawrence G, 2020. The successful use of extracorporeal carbon dioxide removal as a rescue therapy in a patient with severe COVID-19 pneumonitis. Anaesth Rep, 8(2):113–115. https://doi.org/10.1002/anr3.12072

    Article  Google Scholar 

  92. Vardanjani AE, Ronco C, Rafiei H, et al., 2021. Early hemoperfusion for cytokine removal may contribute to prevention of intubation in patients infected with COVID-19. Blood Purif, 50(2):257–260. https://doi.org/10.1159/000509107

    Google Scholar 

  93. Varga Z, Flammer AJ, Steiger P, et al., 2020. Endothelial cell infection and endotheliitis in COVID-19. Lancet, 395(10234):1417–1418. https://doi.org/10.1016/s0140-6736(20)30937-5

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Velavan TP, Meyer CG, 2020. The COVID-19 epidemic. Trop Med Int Health, 25(3):278–280. https://doi.org/10.1111/tmi.13383

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Villa G, Chelazzi C, Morettini E, et al., 2017. Organ dysfunction during continuous veno-venous high cut-off hemodialysis in patients with septic acute kidney injury: a prospective observational study. PLoS ONE, 12(2):e0172039. https://doi.org/10.1371/journal.pone.0172039

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. Volbeda M, Londema M, van Meurs M, et al., 2020. A method to improve continuous renal replacement therapy circuit survival time in critically ill coronavirus disease 2019 patients with acute kidney injury. Crit Care Explor, 2(10):e0258. https://doi.org/10.1097/cce.0000000000000258

    PubMed  PubMed Central  Article  Google Scholar 

  97. Wang P, Sha J, Meng M, et al., 2020. Risk factors for severe COVID-19 in middle-aged patients without comorbidities: a multicentre retrospective study. J Transl Med, 18:461. https://doi.org/10.1186/s12967-020-02655-8

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Wang Y, Jiang WW, He Q, et al., 2020. A retrospective cohort study of methylprednisolone therapy in severe patients with COVID-19 pneumonia. Sig Transduct Target Ther, 5:57. https://doi.org/10.1038/s41392-020-0158-2

    Article  CAS  Google Scholar 

  99. Weidhase L, Haussig E, Haussig S, et al., 2019. Middle molecule clearance with high cut-off dialyzer versus high-flux dialyzer using continuous veno-venous hemodialysis with regional citrate anticoagulation: a prospective randomized controlled trial. PLoS ONE, 14(4):e0215823. https://doi.org/10.1371/journal.pone.0215823

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. Wu CM, Chen XY, Cai YP, et al., 2020. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med, 180(7):934–943. https://doi.org/10.1001/jamainternmed.2020.0994

    CAS  PubMed  Article  Google Scholar 

  101. Wu HJ, Larsen CP, Hernandez-Arroyo CF, et al., 2020. AKI and collapsing glomerulopathy associated with COVID-19 and APOL1 high-risk genotype. J Am Soc Nephrol, 31(8): 1688–1695. https://doi.org/10.1681/asn.2020050558

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. Wu Z, Zhang Q, Ye G, et al., 2021. Structural and physiological changes of the human body upon SARS-CoV-2 infection. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(4): 310–317. https://doi.org/10.1631/jzus.B2000523

    CAS  Article  Google Scholar 

  103. Wu ZY, McGoogan JM, 2020. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA, 323(13):1239–1242. https://doi.org/10.1001/jama.2020.2648

    CAS  PubMed  Article  Google Scholar 

  104. Xiang HL, Song B, Zhang YY, et al., 2021. The effectiveness of continuous renal replacement therapy in critical COVID-19 patients with cytokine release syndrome: a retrospective, multicenter, descriptive study from Wuhan, China. Aging, 13(7):9243–9252 https://doi.org/10.18632/aging.202838

    PubMed  PubMed Central  Article  Google Scholar 

  105. Yang XB, Yu Y, Xu JQ, et al., 2020. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med, 8(5):475–481. https://doi.org/10.1016/s2213-2600(20)30079-5

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Yang Y, Shi J, Ge S, et al., 2020. Association between prolonged intermittent renal replacement therapy and all-cause mortality in COVID-19 patients undergoing invasive mechanical ventilation: a retrospective cohort study. Blood Purif, 50(4–5):481–488. https://doi.org/10.1159/000512099

    PubMed  Google Scholar 

  107. Yessayan LT, Heung M, Girard FA, et al., 2021. Deployment of a new CRRT/PIRRT device during the COVID-19 pandemic emergency: organizational challenges and implementation results. Blood Purif, 50(3):390–398. https://doi.org/10.1159/000511726

    CAS  PubMed  Article  Google Scholar 

  108. Yiğenoğlu TN, Ulas T, Dal MS, et al., 2020. Extracorporeal blood purification treatment options for COVID-19: the role of immunoadsorption. Transfus Apher Sci, 59(4):102855. https://doi.org/10.1016/j.transci.2020.102855

    PubMed  PubMed Central  Article  Google Scholar 

  109. You B, Zhang YL, Luo GX, et al., 2018. Early application of continuous high-volume haemofiltration can reduce sepsis and improve the prognosis of patients with severe burns. Crit Care, 22:173. https://doi.org/10.1186/s13054-018-2095-9

    PubMed  PubMed Central  Article  Google Scholar 

  110. Zachariah U, Nair SC, Goel A, et al., 2020. Targeting raised von Willebrand factor levels and macrophage activation in severe COVID-19: consider low volume plasma exchange and low dose steroid. Thromb Res, 192:2. https://doi.org/10.1016/j.thromres.2020.05.001

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. Zarbock A, Kellum JA, Schmidt C, et al., 2016. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA, 315(20): 2190–2199. https://doi.org/10.1001/jama.2016.5828

    CAS  PubMed  Article  Google Scholar 

  112. Zhao J, Cui W, Tian BP, 2020. Efficacy of tocilizumab treatment in severely ill COVID-19 patients. Crit Care, 24:524. https://doi.org/10.1186/s13054-020-03224-7

    PubMed  PubMed Central  Article  Google Scholar 

  113. Zhou F, Yu T, Du RH, et al., 2020. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 395(10229):1054–1062. https://doi.org/10.1016/s0140-6736(20)30566-3

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Zou H, Li SQ, 2020. ECMO/CRRT combined support in the treatment of critically ill patients with novel coronavirus pneumonia. Eur Heart J-Case Rep, 4(FI1):1–3. https://doi.org/10.1093/ehjcr/ytaa247

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University (Nos. 2018HXFH018 and ZYGD18027), China.

Author information

Affiliations

Authors

Contributions

Zhifeng ZHOU, Huang KUANG, and Yuexian MA searched the literature; Zhifeng ZHOU and Huang KUANG drafted the manuscript; Ling ZHANG contributed to the design and revision of this manuscript. All authors approved the final manuscript.

Corresponding authors

Correspondence to Zhifeng Zhou or Ling Zhang.

Ethics declarations

Zhifeng ZHOU, Huang KUANG, Yuexian MA, and Ling ZHANG declare that they have no conflict of interest.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Kuang, H., Ma, Y. et al. Application of extracorporeal therapies in critically ill COVID-19 patients. J. Zhejiang Univ. Sci. B 22, 701–717 (2021). https://doi.org/10.1631/jzus.B2100344

Download citation

Key words

  • Coronavirus disease 2019 (COVID-19)
  • Critical illness
  • Cytokine release syndrome (CRS)
  • Acute kidney injury (AKI)
  • Extracorporeal therapy

关键词

  • 新型冠状病毒型肺炎(COVID-19)
  • 重症疾病
  • 细胞因子释放综合征(CRS)
  • 急性肾损伤(AKI)
  • 体外疗法