Skip to main content

Transcriptional memory and response to adverse temperatures in plants

植物在不利温度下的反应和转录记忆

Abstract

Temperature is one of the major environmental signals controlling plant development, geographical distribution, and seasonal behavior. Plants perceive adverse temperatures, such as high, low, and freezing temperatures, as stressful signals that can cause physiological defects and even death. As sessile organisms, plants have evolved sophisticated mechanisms to adapt to recurring stressful environments through changing gene expression or transcriptional reprogramming. Transcriptional memory refers to the ability of primed plants to remember previously experienced stress and acquire enhanced tolerance to similar or different stresses. Epigenetic modifications mediate transcriptional memory and play a key role in adapting to adverse temperatures. Understanding the mechanisms of the formation, maintenance, and resetting of stress-induced transcriptional memory will not only enable us to understand why there is a trade-off between plant defense and growth, but also provide a theoretical basis for generating stress-tolerant crops optimized for future climate change. In this review, we summarize recent advances in dissecting the mechanisms of plant transcriptional memory in response to adverse temperatures, based mainly on studies of the model plant Arabidopsis thaliana. We also discuss remaining questions that are important for further understanding the mechanisms of transcriptional memory during the adverse temperature response.

概要

温度是调控植物生长发育、 地理分布和季节性行为的主要环境信号之一. 在自然界中植物感受高温、 低温和冻害等不利温度胁迫后, 会引起生理上的损害甚至死亡. 植物不可以移动, 但植物已经进化出复杂的应对机制, 通过改变基因表达或转录重编程适应反复出现的不利环境. 转录记忆是指植物通过转录调控对第一次胁迫产生的记忆能力, 在受到再次相似或不同胁迫时表现出增强的抵御能力. 表观遗传修饰在植物对不利温度胁迫中转录记忆的调控具有重要作用. 解析温度胁迫中转录记忆形成、 维持和重建的分子机制, 不仅可以探索植物在应对逆境和生长发育中的平衡策略, 而且可以为培养适应未来气候的耐胁迫作物提供理论指导. 本文主要综述模式植物拟南芥的研究结果, 阐述了不利温度胁迫下植物转录记忆的分子机制, 并对此机制中一些有待解决的重要问题进行了讨论.

This is a preview of subscription content, access via your institution.

References

  1. Abd-El-Haliem A, Meijer HJG, Tameling WIL, et al., 2012. Defense activation triggers differential expression of phospholipase-C (PLC) genes and elevated temperature induces phosphatidic acid (PA) accumulation in tomato. Plant Signal Behav, 7(9):1073–1078. https://doi.org/10.4161/psb.21030

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Alexander LV, Zhang X, Peterson TC, et al., 2006. Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res, 111(D5):D05109. https://doi.org/10.1029/2005jd006290

    Google Scholar 

  3. Amasino R, 2010. Seasonal and developmental timing of flowering. Plant J, 61(6): 1001–1013. https://doi.org/10.1111/j.1365-313X.2010.04148.x

    CAS  PubMed  Article  Google Scholar 

  4. Andrés F, Coupland G, 2012. The genetic basis of flowering responses to seasonal cues. Nat Rev Genet, 13(9):627–639. https://doi.org/10.1038/nrg3291

    PubMed  Article  CAS  Google Scholar 

  5. Angel A, Song J, Dean C, et al., 2011. A Polycomb-based switch underlying quantitative epigenetic memory. Nature, 476(7358):105–108. https://doi.org/10.1038/nature10241

    CAS  PubMed  Article  Google Scholar 

  6. Avramova Z, 2015. Transcriptional ‘memory’ of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. Plant J, 83(1):149–159. https://doi.org/10.1111/tpj.12832

    CAS  PubMed  Article  Google Scholar 

  7. Bannister AJ, Schneider R, Kouzarides T, 2002. Histone methylation: dynamic or static? Cell, 109(7):801–806. https://doi.org/10.1016/s0092-8674(02)00798-5

    CAS  PubMed  Article  Google Scholar 

  8. Bargmann BOR, Munnik T, 2006. The role of phospholipase D in plant stress responses. Curr Opin Plant Biol, 9(5): 515–522. https://doi.org/10.1016/j.pbi.2006.07.011

    CAS  PubMed  Article  Google Scholar 

  9. Bartel DP, 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    CAS  PubMed  Article  Google Scholar 

  10. Bäurle I, 2018. Can’t remember to forget you: chromatinbased priming of somatic stress responses. Semin Cell Dev Biol, 83:133–139. https://doi.org/10.1016/j.semcdb.2017.09.032

    PubMed  Article  CAS  Google Scholar 

  11. Berry S, Hartley M, Olsson TS, et al., 2015. Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance. 4:e07205. https://doi.org/10.7554/eLife.07205

  12. Bloomer RH, Hutchison CE, Bäurle I, et al., 2020. The Arabidopsis epigenetic regulator ICU11 as an accessory protein of Polycomb Repressive Complex 2. Proc Natl Acad Sci USA, 117(28):16660–16666. https://doi.org/10.1073/pnas.1920621117

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Borg M, Jacob Y, Susaki D, et al., 2020. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat Cell Biol, 22(6):621–629. https://doi.org/10.1038/s41556-020-0515-y

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Bruce TJA, Matthes MC, Napier JA, et al., 2007. Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci, 173(6):603–608. https://doi.org/10.1016/j.plantsci.2007.09.002

    CAS  Article  Google Scholar 

  15. Brzezinka K, Altmann S, Czesnick H, et al., 2016. Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. eLife, 5:e17061. https://doi.org/10.7554/eLife.17061

    PubMed  PubMed Central  Article  Google Scholar 

  16. Byun YJ, Koo MY, Joon H, et al., 2014. Comparative analysis of gene expression under cold acclimation, deacclimation and reacclimation in Arabidopsis. Physiol Plant, 152(2): 256–274. https://doi.org/10.1111/ppl.12163

    CAS  PubMed  Article  Google Scholar 

  17. Capovilla G, Pajoro A, Immink RGH, et al., 2015. Role of alternative pre-mRNA splicing in temperature signaling. Curr Opin Plant Biol, 27:97–103. https://doi.org/10.1016/j.pbi.2015.06.016

    CAS  PubMed  Article  Google Scholar 

  18. Charng YY, Liu HC, Liu NY, et al., 2007. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol, 143(1):251–262. https://doi.org/10.1104/pp.106.091322

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Choi J, Hyun Y, Kang M, et al., 2009. Resetting and regulation of FLOWERING LOCUS C expression during Arabidopsis reproductive development. Plant J, 57(5):918–931. https://doi.org/10.1111/j.1365-313X.2008.03776.x

    CAS  PubMed  Article  Google Scholar 

  20. Coleman RT, Struhl G, 2017. Causal role for inheritance of H3K27me3 in maintaining the OFF state of a Drosophila HOX gene. Science, 356(6333):eaai8236. https://doi.org/10.1126/science.aai8236

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. Conrath U, Beckers GJM, Langenbach CJG, et al., 2015. Priming for enhanced defense. Annu Rev Phytopathol, 53:97–119. https://doi.org/10.1146/annurev-phyto-080614-120132

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. Crevillén P, Yang HC, Cui X, et al., 2014. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state. Nature, 515(7528):587–590. https://doi.org/10.1038/nature13722

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. Crisp PA, Ganguly D, Eichten SR, et al., 2016. Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv, 2(2):e1501340. https://doi.org/10.1126/sciadv.1501340

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. Cui XY, Zheng Y, Lu Y, et al., 2021. Metabolic control of histone demethylase activity involved in plant response to high temperature. Plant Physiol, 185(4):1813–1828. https://doi.org/10.1093/plphys/kiab020

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. de Lucia F, Crevillen P, Jones AME, et al., 2008. A PHD-Polycomb Repressive Complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci USA, 105(44):16831–16836. https://doi.org/10.1073/pnas.0808687105

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Deans C, Maggert KA, 2015. What do you mean, “epigenetic”? Genetics, 199(4):887–896. https://doi.org/10.1534/genetics.114.173492

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Ding YL, Shi YT, Yang SH, 2020. Molecular regulation of plant responses to environmental temperatures. Mol Plant, 13(4):544–564. https://doi.org/10.1016/j.molp.2020.02.004

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. Duek PD, Elmer MV, van Oosten VR, et al., 2004. The degradation of HFR1, a putative bHLH class transcription factor involved in light signaling, is regulated by phosphorylation and requires COP1. Curr Biol, 14(24):2296–2301. https://doi.org/10.1016/j.cub.2004.12.026

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. Friedrich T, Faivre L, Bäurle I, et al., 2019. Chromatin-based mechanisms of temperature memory in plants. Plant Cell Environ, 42(3):762–770. https://doi.org/10.1111/pce.13373

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. Gendall AR, Levy YY, Wilson A, et al., 2001. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell, 107(4):525–535. https://doi.org/10.1016/s0092-8674(01)00573-6

    CAS  PubMed  Article  Google Scholar 

  31. Gong FD, Miller KM, 2013. Mammalian DNA repair: HATs and HDACs make their mark through histone acetylation. Mutat Res, 750(1–2):23–30. https://doi.org/10.1016/j.mrfmmm.2013.07.002

    CAS  PubMed  Article  Google Scholar 

  32. Gray WM, Östin A, Sandberg G, et al., 1998. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA, 95(12):7197–7202. https://doi.org/10.1073/pnas.95.12.7197

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Greb T, Mylne JS, Crevillen P, et al., 2007. The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC. Curr Biol, 17(1):73–78. https://doi.org/10.1016/j.cub.2006.11.052

    CAS  PubMed  Article  Google Scholar 

  34. Hasanuzzaman M, Nahar K, Alam M, et al., 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci, 14(5):9643–9684. https://doi.org/10.3390/ijms14059643

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. He YH, 2012. Chromatin regulation of flowering. Trends Plant Sci, 17(9):556–562. https://doi.org/10.1016/j.tplants.2012.05.001

    CAS  PubMed  Article  Google Scholar 

  36. Heo JB, Sung S, 2011. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science, 331(6013):76–79. https://doi.org/10.1126/science.1197349

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. Hilker M, Schwachtje J, Baier M, et al., 2016. Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev, 91(4):1118–1133. https://doi.org/10.1111/brv.12215

    PubMed  Article  PubMed Central  Google Scholar 

  38. Huai JL, Zhang XY, Li JL, et al., 2018. SEUSS and PIF4 coordinately regulate light and temperature signaling pathways to control plant growth. Mol Plant, 11(7):928–942. https://doi.org/10.1016/j.molp.2018.04.005

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. Ingouff M, Rademacher S, Holec S, et al., 2010. Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis. Curr Biol, 20(23):2137–2143. https://doi.org/10.1016/j.cub.2010.11.012

    CAS  PubMed  Article  Google Scholar 

  40. Jia YX, Ding YL, Shi YT, et al., 2016. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol, 212(2):345–353. https://doi.org/10.1111/nph.14088

    CAS  PubMed  Article  Google Scholar 

  41. Jiang DH, Berger F, 2017. DNA replication-coupled histone modification maintains Polycomb gene silencing in plants. Science, 357(6356):1146–1149. https://doi.org/10.1126/science.aan4965

    CAS  PubMed  Article  Google Scholar 

  42. Kim DH, Sung S, 2017. Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs. Dev Cell, 40(3):302–312.e4. https://doi.org/10.1016/j.devcel.2016.12.021

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Kinoshita T, Seki M, 2014. Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol, 55(11):1859–1863. https://doi.org/10.1093/pcp/pcu125

    CAS  PubMed  Article  Google Scholar 

  44. Kouzarides T, 2007. Chromatin modifications and their function. Cell, 128(4):693–705. https://doi.org/10.1016/j.cell.2007.02.005

    CAS  PubMed  Article  Google Scholar 

  45. Kumar SV, Wigge PA, 2010. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell, 140(1):136–147. https://doi.org/10.1016/j.cell.2009.11.006

    CAS  PubMed  Article  Google Scholar 

  46. Kwon CS, Lee D, Choi G, et al., 2009. Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. Plant J, 60(1):112–121. https://doi.org/10.1111/j.1365-313X.2009.03938.x

    CAS  PubMed  Article  Google Scholar 

  47. Lämke J, Brzezinka K, Altmann S, et al., 2016. A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J, 35(2):162–175. https://doi.org/10.15252/embj.201592593

    PubMed  Article  CAS  Google Scholar 

  48. Lang-Mladek C, Popova O, Kiok K, et al., 2010. Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant, 3(3): 594–602. https://doi.org/10.1093/mp/ssq014

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Laprell F, Finkl K, Müller J, 2017. Propagation of Polycomb-repressed chromatin requires sequence-specific recruitment to DNA. Science, 356(6333):85–88. https://doi.org/10.1126/science.aai8266

    CAS  PubMed  Article  Google Scholar 

  50. Lee HJ, Jung JH, Cortés Llorca L, et al., 2014. FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat Commun, 5:5473. https://doi.org/10.1038/ncomms6473

    PubMed  Article  Google Scholar 

  51. Leuendorf JE, Frank M, Schmülling T, 2020. Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress. Sci Rep, 10:689. https://doi.org/10.1038/s41598-019-56797-x

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Li ZC, Jiang DH, He YH, 2018. FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C mRNA production. Nat Plants, 4(10):836–846. https://doi.org/10.1038/s41477-018-0250-6

    CAS  PubMed  Article  Google Scholar 

  53. Lim CJ, Park J, Shen MZ, et al., 2020. The histone-modifying complex PWR/HOS15/HD2C epigenetically regulates cold tolerance. Plant Physiol, 184(2):1097–1111. https://doi.org/10.1104/pp.20.00439

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Lin CT, Thomashow MF, 1992. DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR 15 polypeptide. Plant Physiol, 99(2):519–525. https://doi.org/10.1104/pp.99.2.519

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Liu HC, Lämke J, Lin SY, et al., 2018. Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. Plant J, 95(3):401–413. https://doi.org/10.1111/tpj.13958

    CAS  PubMed  Article  Google Scholar 

  56. Liu JZ, Feng LL, Gu XT, et al., 2019. An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res, 29(5):379–390. https://doi.org/10.1038/s41422-019-0145-8

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Liu Q, Kasuga M, Sakuma Y, et al., 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10(8):1397–1406. https://doi.org/10.1105/tpc.10.8.1391

    Article  Google Scholar 

  58. Lobell DB, Gourdji SM, 2012. The influence of climate change on global crop productivity. Plant Physiol, 160(4): 1686–1697. https://doi.org/10.1104/pp.112.208298

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Lobell DB, Schlenker W, Costa-Roberts J, 2011. Climate trends and global crop production since 1980. Science, 333(6042):616–620. https://doi.org/10.1126/science.1204531

    CAS  PubMed  Article  Google Scholar 

  60. Luco RF, Pan Q, Tominaga K, et al., 2010. Regulation of alternative splicing by histone modifications. Science, 327(5968):996–1000. https://doi.org/10.1126/science.1184208

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Luger K, Mäder AW, Richmond RK, et al., 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature, 389(6648):251–260. https://doi.org/10.1038/38444

    CAS  PubMed  Article  Google Scholar 

  62. Luo X, Ou Y, Li RJ, et al., 2020. Maternal transmission of the epigenetic ‘memory of winter cold’ in Arabidopsis. Nat Plants, 6(10):1211–1218. https://doi.org/10.1038/s41477-020-00774-0

    CAS  PubMed  Article  Google Scholar 

  63. Martinez-Medina A, Flors V, Heil M, et al., 2016. Recognizing plant defense priming. Trends Plant Sci, 21(10):818–822. https://doi.org/10.1016/j.tplants.2016.07.009

    CAS  PubMed  Article  Google Scholar 

  64. Michaels SD, Amasino RM, 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 11(5):949–956. https://doi.org/10.1105/tpc.11.5.949

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Molinier J, Ries G, Zipfel C, et al., 2006. Transgeneration memory of stress in plants. Nature, 442(7106):1046–1049. https://doi.org/10.1038/nature05022

    CAS  PubMed  Article  Google Scholar 

  66. Mozgová I, Wildhaber T, Liu QS, et al., 2015. Chromatin assembly factor CAF-1 represses priming of plant defence response genes. Nat Plants, 1(9):15127. https://doi.org/10.1038/nplants.2015.127

    PubMed  Article  CAS  Google Scholar 

  67. Nishad A, Nandi AK, 2021. Recent advances in plant thermomemory. Plant Cell Rep, 40(1):19–27. https://doi.org/10.1007/s00299-020-02604-1

    CAS  PubMed  Article  Google Scholar 

  68. Ohama N, Sato H, Shinozaki K, et al., 2017. Transcriptional regulatory network of plant heat stress response. Trends Plant Sci, 22(1):53–65. https://doi.org/10.1016/j.tplants.2016.08.015

    CAS  PubMed  Article  Google Scholar 

  69. Pagter M, Alpers J, Erban A, et al., 2017. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana. BMC Genomics, 18:731. https://doi.org/10.1186/s12864-017-4126-3

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. Pajoro A, Severing E, Angenent GC, et al., 2017. Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants. Genome Biol, 18:102. https://doi.org/10.1186/s13059-017-1235-x

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Park J, Lim CJ, Shen MZ, et al., 2018. Epigenetic switch from repressive to permissive chromatin in response to cold stress. Proc Natl Acad Sci USA, 115(23):E5400–E5409. https://doi.org/10.1073/pnas.1721241115

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Pavangadkar K, Thomashow MF, Triezenberg SJ, 2010. Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis. Plant Mol Biol, 74(1–2):183–200. https://doi.org/10.1007/s11103-010-9665-9

    CAS  PubMed  Article  Google Scholar 

  73. Qüesta JI, Song J, Geraldo N, et al., 2016. Arabidopsis transcriptional repressor VAL1 triggers Polycomb silencing at FLC during vernalization. Science, 353(6298):485–488. https://doi.org/10.1126/science.aaf7354

    PubMed  Article  CAS  Google Scholar 

  74. Qüesta JI, Antoniou-Kourounioti RL, Rosa S, et al., 2020. Noncoding SNPs influence a distinct phase of Polycomb silencing to destabilize long-term epigenetic memory at Arabidopsis FLC. Genes Dev, 34(5–6):446–461. https://doi.org/10.1101/gad.333245.119

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. Quint M, Delker C, Franklin KA, et al., 2016. Molecular and genetic control of plant thermomorphogenesis. Nat Plants, 2:15190. https://doi.org/10.1038/nplants.2015.190

    CAS  PubMed  Article  Google Scholar 

  76. Sani E, Herzyk P, Perrella G, et al., 2013. Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol, 14(6):R59. https://doi.org/10.1186/gb-2013-14-6-r59

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  77. Shen Y, Lei TT, Cui XY, et al., 2019. Arabidopsis histone deacetylase HDA15 directly represses plant response to elevated ambient temperature. Plant J, 100(5):991–1006. https://doi.org/10.1111/tpj.14492

    CAS  PubMed  Article  Google Scholar 

  78. Song ZT, Zhang LL, Han JJ, et al., 2021. Histone H3K4 methyltransferases SDG25 and ATX1 maintain heat-stress gene expression during recovery in Arabidopsis. Plant J, 105(5): 1326–1338. https://doi.org/10.1111/tpj.15114

    CAS  PubMed  Article  Google Scholar 

  79. Spiker S, 1982. Histone variants in plants. Evidence for primary structure variants differing in molecular weight. J Biol Chem, 257(23):14250–14255. https://doi.org/10.1016/s0021-9258(19)45373-8

    CAS  PubMed  Article  Google Scholar 

  80. Stief A, Altmann S, Hoffmann K, et al., 2014. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell, 26(4): 1792–1807. https://doi.org/10.1105/tpc.114.123851

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Stockinger EJ, Gilmour SJ, Thomashow MF, 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 94(3): 1035–1040. https://doi.org/10.1073/pnas.943.1035

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Sun JQ, Qu LL, Li YN, et al., 2012. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet, 8(3):e1002594. https://doi.org/10.1371/journal.pgen.1002594

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Sung S, Amasino RM, 2004. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature, 427(6970):159–164. https://doi.org/10.1038/nature02195

    CAS  PubMed  Article  Google Scholar 

  84. Sung S, He YH, Eshoo TW, et al., 2006. Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nat Genet, 38(6):706–710. https://doi.org/10.1038/ng1795

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. Suzuki N, Koussevitzky S, Mittler R, et al., 2012. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ, 35(2):259–270. https://doi.org/10.1111/j.1365-3040.2011.02336.x

    CAS  Article  Google Scholar 

  86. Swiezewski S, Liu FQ, Magusin A, et al., 2009. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature, 462(7274):799–802. https://doi.org/10.1038/nature08618

    CAS  PubMed  Article  Google Scholar 

  87. Szaker HM, Darkó É, Medzihradszky A, et al., 2019. miR824/AGAMOUS-LIKE16 module integrates recurring environmental heat stress changes to fine-tune poststress development. Front Plant Sci, 10:1454. https://doi.org/10.3389/fpls.2019.01454

    PubMed  PubMed Central  Article  Google Scholar 

  88. Tack J, Barkley A, Nalley LL, 2015. Effect of warming temperatures on us wheat yields. Proc Natl Acad Sci USA, 112(22):6931–6936. https://doi.org/10.1073/pnas.1415181112

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Taji T, Ohsumi C, Iuchi S, et al., 2002. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J, 29(4):417–426. https://doi.org/10.1046/j.0960-7412.2001.01227.X

    CAS  PubMed  Article  Google Scholar 

  90. Tan MJ, Luo H, Lee S, et al., 2011. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 146(6):1016–1028. https://doi.org/10.1016/j.cell.2011.08.008

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Tao Z, Shen LS, Gu XF, et al., 2017. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature, 551(7678):124–128. https://doi.org/10.1038/nature24300

    PubMed  Article  CAS  Google Scholar 

  92. Tao Z, Hu HM, Luo X, et al., 2019. Embryonic resetting of the parental vernalized state by two B3 domain transcription factors in Arabidopsis. Nat Plants, 5(4):424–435. https://doi.org/10.1038/s41477-019-0402-3

    CAS  PubMed  Article  Google Scholar 

  93. Thomashow MF, 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 50:571–599. https://doi.org/10.1146/annurev.arplant.50.1.571

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. To TK, Nakaminami K, Kim JM, et al., 2011. Arabidopsis HDA6 is required for freezing tolerance. Biochem Biophys Res Commun, 406(3):414–419. https://doi.org/10.1016/j.bbrc.2011.02.058

    CAS  PubMed  Article  Google Scholar 

  95. Urrea Castellanos R, Friedrich T, Petrovic N, et al., 2020. FORGETTER2 protein phosphatase and phospholipase D modulate heat stress memory in Arabidopsis. Plant J, 104(1):7–17. https://doi.org/10.1111/tpj.14927

    CAS  PubMed  Article  Google Scholar 

  96. van der Woude LC, Perrella G, Snoek BL, et al., 2019. HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion. Proc Natl Acad Sci USA, 116(50): 25343–25354. https://doi.org/10.1073/pnas.1911694116

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Vitasse Y, Lenz A, Körner C, 2014. The interaction between freezing tolerance and phenology in temperate deciduous trees. Front Plant Sci, 5:541. https://doi.org/10.3389/fpls.2014.00541

    PubMed  PubMed Central  Article  Google Scholar 

  98. Vriet C, Hennig L, Laloi C, 2015. Stress-induced chromatin changes in plants: of memories, metabolites and crop improvement. Cell Mol Life Sci, 72(7): 1261–1273. https://doi.org/10.1007/s00018-014-1792-z

    CAS  PubMed  Article  Google Scholar 

  99. Vyse K, Faivre L, Romich M, et al., 2020. Transcriptional and post-transcriptional regulation and transcriptional memory of chromatin regulators in response to low temperature. Front Plant Sci, 11:39. https://doi.org/10.3389/fpls.2020.00039

    PubMed  PubMed Central  Article  Google Scholar 

  100. Wang BB, Brendel V, 2004. The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biol, 5(12):R102. https://doi.org/10.1186/gb-2004-5-12-r102

    PubMed  PubMed Central  Article  Google Scholar 

  101. Wang CZ, Zhu B, Xiong J, 2018. Recruitment and reinforcement: maintaining epigenetic silencing. Sci China Life Sci, 61(5):515–522. https://doi.org/10.1007/s11427-018-9276-7

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  102. Wanner LA, Junttila O, 1999. Cold-induced freezing tolerance in Arabidopsis. Plant Physiol, 120(2):391–400. https://doi.org/10.1104/pp.120.2.391

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. Waqas M, Khan AL, Shahzad R, et al., 2015. Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 16(12):1011–1018. https://doi.org/10.1631/jzus.B1500081

    CAS  Article  Google Scholar 

  104. Whittaker C, Dean C, 2017. The FLC locus: a platform for discoveries in epigenetics and adaptation. Annu Rev Cell Dev Biol, 33:555–575. https://doi.org/10.1146/annurev-cellbio-100616-060546

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. Wiese AJ, Steinbachová L, Timofejeva L, et al., 2021. Arabidopsis bZIP18 and bZIP52 accumulate in nuclei following heat stress where they regulate the expression of a similar set of genes. Int J Mol Sci, 22(2):530. https://doi.org/10.3390/ijms22020530

    CAS  PubMed Central  Article  Google Scholar 

  106. Xin Z, Browse J, 2000. Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ, 23(9):893–902. https://doi.org/10.1046/j.1365-3040.2000.00611.x

    Article  Google Scholar 

  107. Yang HC, Han ZF, Cao Y, et al., 2012. A companion cell-dominant and developmentally regulated H3K4 demethylase controls flowering time in Arabidopsis via the repression of FLC expression. PLoS Genet, 8(4):e1002664. https://doi.org/10.1371/journal.pgen.1002664

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. Yang HC, Berry S, Olsson TSG, et al., 2017. Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis. Science, 357(6356): 1142–1145. https://doi.org/10.1126/science.aan1121

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. Yoo CY, Miura K, Jin JB, et al., 2006. SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant Physiol, 142(4):1548–1558. https://doi.org/10.1104/pp.106.088831

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. Yuan WY, Luo X, Li ZC, et al., 2016. A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis. Nat Genet, 48(12):1527–1534. https://doi.org/10.1038/ng.3712

    CAS  PubMed  Article  Google Scholar 

  111. Zentner GE, Henikoff S, 2013. Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol, 20(3):259–266. https://doi.org/10.1038/nsmb.2470

    CAS  PubMed  Article  Google Scholar 

  112. Zha P, Jing YJ, Xu G, et al., 2017. Pickle chromatin-remodeling factor controls thermosensory hypocotyl growth of Arabidopsis. Plant Cell Environ, 40(10):2426–2436. https://doi.org/10.1111/pce.13049

    CAS  PubMed  Article  Google Scholar 

  113. Zhong SH, Liu JZ, Jin H, et al., 2013. Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in Arabidopsis. Proc Natl Acad Sci USA, 110(22):9171–9176. https://doi.org/10.1073/pnas.1219655110

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Zhong XH, 2016. Comparative epigenomics: a powerful tool to understand the evolution of DNA methylation. New Phytol, 210(1):76–80. https://doi.org/10.1111/nph.13540

    CAS  PubMed  Article  Google Scholar 

  115. Zhou HL, Luo GB, Wise JA, et al., 2014. Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res, 42(2):701–713. https://doi.org/10.1093/nar/gkt875

    CAS  PubMed  Article  Google Scholar 

  116. Zhu JH, Jeong JC, Zhu YM, et al., 2008. Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci USA, 105(12):4945–4950. https://doi.org/10.1073/pnas.0801029105

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. Zuther E, Schaarschmidt S, Fischer A, et al., 2019. Molecular signatures associated with increased freezing tolerance due to low temperature memory in Arabidopsis. Plant Cell Environ, 42(3):854–873. https://doi.org/10.1111/pce.13502

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31970534) and the Fundamental Research Funds for the Central Universities (No. 2019QNA6014), China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zeng Tao.

Additional information

Author contributions

Wei XIE, Qianqian TANG, and Fei YAN wrote the manuscript and prepared the figures. Zeng TAO contributed to the study design, writing and editing of the manuscript. All authors have read and approved the final manuscript and, therefore, have full access to all the data in the study and take responsibility for the integrity and security of the data.

Compliance with ethics guidelines

Wei XIE, Qianqian TANG, Fei YAN, and Zeng TAO declare that they have no conflict of interest.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Tang, Q., Yan, F. et al. Transcriptional memory and response to adverse temperatures in plants. J. Zhejiang Univ. Sci. B 22, 791–804 (2021). https://doi.org/10.1631/jzus.B2100287

Download citation

Keywords

  • Transcriptional memory
  • Temperature stress
  • Vernalization
  • Cold acclimation
  • Thermomorphogenesis
  • Heat stress

关键词

  • 转录记忆
  • 温度胁迫
  • 春化作用
  • 冷驯化
  • 热形态建成
  • 热胁迫