Skip to main content

Opposite effects of miR-155 in the initial and later stages of lipopolysaccharide (LPS)-induced inflammatory response

miR-155在脂多糖诱导的炎症应答的早期和晚期发挥相反的调控作用

Abstract

Although microRNA-155 (miR-155) is considered a pro-inflammatory mediator, cumulative evidence indicates that it also has anti-inflammatory effects in macrophages and dendritic cells. In this study, we identified the dramatic expression changes of more than half of potential miR-155-targeted genes upon lipopolysaccharide (LPS) stimulation; 223 genes were down-regulated and 85 genes were up-regulated, including suppressor of cytokine signaling 1 (SOCS1) and transforming growth factor-β-activated kinase 1-binding protein 2 (TAB2), two well-known genes involved in miR-155-mediated regulation of the Toll-like receptor 4 (TLR4) signaling pathway. We also found that miR-155 acted as an anti-inflammatory mediator in the initial stage of LPS-induced inflammatory response mainly through repressing TAB2 protein translation, and as a pro-inflammatory mediator by down-regulating SOCS1 in the later stage. Meanwhile, overexpression of TAB2 3′ untranslated region (UTR) in macrophages promoted the development of endotoxin tolerance by competing for binding with miR-155, which resulted in an elevated expression level of SOCS1 protein. These findings provide new insights for understanding the regulatory mechanisms in fine-tuning of LPS-induced innate immune response.

摘要

目的

研究miR-155在脂多糖诱导的炎症应答不同时相中的调控作用, 并初步探讨其作用机制.

创新点

证明了miR-155在脂多糖诱导的炎症应答早晚期不同的调控作用.

方法

采用二代转录组测序检测脂多糖刺激下的巨噬细胞内miR-155靶基因池的改变;并分析核糖体测序数据验证miR-155的靶基因的翻译效率;采用实时定量聚合酶链反应(RT-qPCR)和免疫印迹(western blotting)明确靶基因的表达;采用荧光素酶报告基因系统和生物素介导的microRNA pulldown技术明确miR-155和靶基因在不同时相的结合;通过脂多糖体外刺激巨噬细胞, 建立内毒素耐受模型, 并采用酶联免疫吸附测定(ELISA)检测炎症因子的分泌水平.

结论

miR-155在脂多糖诱导的炎症早期起到抑制炎症应答的作用, 中后期发挥促炎效应. 这种相反的效应是由于巨噬细胞炎症应答过程中miR-155的Toll样受体4(TLR4)信号相关靶基因TAB2和SOCS1的相对丰度改变造成的. 同时, TAB2通过ceRNA机制减弱miR-155对SOCS1的抑制, 促进内毒素耐受状态的形成.

This is a preview of subscription content, access via your institution.

References

  1. Androulidaki A, Iliopoulos D, Arranz A, et al., 2009. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity, 31 (2):220–231. https://doi.org/10.1016/j.immuni.2009.06.024

    CAS  Article  Google Scholar 

  2. Bossi L, Figueroa-Bossi N, 2016. Competing endogenous RNAs: a target-centric view of small RNA regulation in bacteria. Nat Rev Microbiol, 14(12):775–784. https://doi.org/10.1038/nrmicro.2016.129

    CAS  Article  Google Scholar 

  3. Ceppi M, Pereira PM, Dunand-Sauthier I, et al., 2009. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci USA, 106(8):2735–2740. https://doi.org/10.1073/pnas.0811073106

    CAS  Article  Google Scholar 

  4. Chen C, Liu JM, Luo YP, 2020. MicroRNAs in tumor immunity: functional regulation in tumor-associated macrophages. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(1):12–28. https://doi.org/10.1631/jzus.B1900452

    CAS  Article  Google Scholar 

  5. Chen LQ, Song YJ, He L, et al., 2016. MicroRNA-223 promotes type I interferon production in antiviral innate immunity by targeting forkhead box protein O3 (FOXO3). J Biol Chem, 291(28):14706–14716. https://doi.org/10.1074/jbc.M115.700252

    CAS  Article  Google Scholar 

  6. Chen QY, Wang H, Liu Y, et al., 2012. Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1β production in macrophages by targeting STAT3. PLoS ONE, 7(8):e42971. https://doi.org/10.1371/journal.pone.0042971

    CAS  Article  Google Scholar 

  7. Diwakar BT, Yoast R, Nettleford S, et al., 2019. Crth2 receptor signaling down-regulates lipopolysaccharide-induced NF-αB activation in murine macrophages via changes in intracellular calcium. FASEB J, 33(11): 12838–12852. https://doi.org/10.1096/fj.201802608R

    CAS  Article  Google Scholar 

  8. El-Sahar AE, Shiha NA, el Sayed NS, et al., 2021. Alogliptin attenuates lipopolysaccharide-induced neuroinflammation in mice through modulation of TLR4/MYD88/NF-κB and miRNA-155/SOCS-1 signaling pathways. Int J Neuropsychopharmacol, 24(2): 158–169. https://doi.org/10.1093/ijnp/pyaa078

    CAS  Article  Google Scholar 

  9. Freise N, Burghard A, Ortkras T, et al., 2019. Signaling mechanisms inducing hyporesponsiveness of phagocytes during systemic inflammation. Blood, 134(2):134–146. https://doi.org/10.1182/blood.2019000320

    CAS  Article  Google Scholar 

  10. Gatto G, Rossi A, Rossi D, et al., 2008. Epstein-Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-κB pathway. Nucleic Acids Res, 36(20):6608–6619. https://doi.org/10.1093/nar/gkn666

    CAS  Article  Google Scholar 

  11. Guo X, Zheng Y, 2020. Profiling of miRNAs in mouse peritoneal macrophages responding to Echinococcus multilocularis infection. Front Cell Infect Microbiol, 10:132. https://doi.org/10.3389/fcimb.2020.00132

    CAS  Article  Google Scholar 

  12. Karreth FA, Tay Y, Perna D, et al., 2011. In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell, 147(2):382–395. https://doi.org/10.1016/j.cell.2011.09.032

    CAS  Article  Google Scholar 

  13. Martin M, Rehani K, Jope RS, et al., 2005. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol, 6(8):777–784. https://doi.org/10.1038/ni1221

    CAS  Article  Google Scholar 

  14. Nuzziello N, Liguori M, 2019. The microRNA centrism in the orchestration of neuroinflammation in neurodegenerative diseases. Cells, 8(10): 1193. https://doi.org/10.3390/cells8101193

    CAS  Article  Google Scholar 

  15. O’Connell RM, Taganov KD, Boldin MP, et al., 2007. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA, 104(5):1604–1609. https://doi.org/10.1073/pnas.0610731104

    Article  Google Scholar 

  16. Piccinini AM, Midwood KS, 2012. Endogenous control of immunity against infection: tenascin-C regulates TLR4-mediated inflammation via microRNA-155. Cell Rep, 2(4):914–926. https://doi.org/10.1016/j.celrep.2012.09.005

    CAS  Article  Google Scholar 

  17. Rodriguez A, Vigorito E, Clare S, et al., 2007. Requirement of bic/microRNA-155 for normal immune function. Science, 316(5824):608–611. https://doi.org/10.1126/science.1139253

    CAS  Article  Google Scholar 

  18. Roger T, David J, Glauser MP, et al., 2001. MIF regulates innate immune responses through modulation of Toll-like receptor 4. Nature, 414(6866):920–924. https://doi.org/10.1038/414920a

    CAS  Article  Google Scholar 

  19. Salmena L, Poliseno L, Tay Y, et al., 2011. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 146(3): 353–358. https://doi.org/10.1016/j.cell.2011.07.014

    CAS  Article  Google Scholar 

  20. Sayed AS, el Sayed NSED, 2016. Co-administration of 3-acetyl-11-keto-beta-boswellic acid potentiates the protective effect of celecoxib in lipopolysaccharide-induced cognitive impairment in mice: possible implication of anti-inflammatory and antiglutamatergic pathways. J Mol Neurosci, 59(1): 58–67. https://doi.org/10.1007/s12031-016-0734-7

    CAS  Article  Google Scholar 

  21. Sayed AS, Gomaa IEO, Bader M, et al., 2018. Role of 3-acetyl-11-keto-beta-boswellic acid in counteracting LPS-induced neuroinflammation via modulation of miRNA-155. Mol Neurobiol, 55(7):5798–5808. https://doi.org/10.1007/s12035-017-0801-2

    CAS  Article  Google Scholar 

  22. Sul OJ, Sung YB, Rajasekaran M, et al., 2018. MicroRNA-155 induces autophagy in osteoclasts by targeting transforming growth factor β-activated kinase 1-binding protein 2 upon lipopolysaccharide stimulation. Bone, 116:279–289. https://doi.org/10.1016/j.bone.2018.08.014

    CAS  Article  Google Scholar 

  23. Takeda K, Kaisho T, Akira S, 2003. Toll-like receptors. Annu Rev Immunol, 21:335–376. https://doi.org/10.1146/annurev.immunol.21.120601.141126

    CAS  Article  Google Scholar 

  24. Tang B, Xiao B, Liu Z, et al., 2010. Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation. FEBS Lett, 584(8):1481–1486. https://doi.org/10.1016/j.febslet.2010.02.063

    CAS  Article  Google Scholar 

  25. Tay Y, Kats L, Salmena L, et al., 2011. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 147(2):344–357. https://doi.org/10.1016/j.cell.2011.09.029

    CAS  Article  Google Scholar 

  26. Wan JH, Yang XY, Ren YP, et al., 2019. Inhibition of miR-155 reduces impaired autophagy and improves prognosis in an experimental pancreatitis mouse model. Cell Death Dis, 10(4):303. https://doi.org/10.1038/s41419-019-1545-x

    Article  Google Scholar 

  27. Wong D, Nielsen TB, Bonomo RA, et al., 2017. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev, 30(1):409–447. https://doi.org/10.1128/CMR.00058-16

    CAS  Article  Google Scholar 

  28. Xu CL, Ren GW, Cao G, et al., 2013. miR-155 regulates immune modulatory properties of mesenchymal stem cells by targeting TAK1-binding protein 2. J Biol Chem, 288(16): 11074–11079. https://doi.org/10.1074/jbc.M112.414862

    CAS  Article  Google Scholar 

  29. Xu J, Wu KJ, Jia QJ, et al., 2020. Roles of miRNA and lncRNA in triple-negative breast cancer. J Zhejiang Univ-SciB (Biomed & Biotechnol), 21(9):673–689. https://doi.org/10.1631/jzus.B1900709

    CAS  Article  Google Scholar 

  30. Zhang H, Wu ZM, Yang YP, et al., 2019. Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 20(10):816–827. https://doi.org/10.1631/jzus.B1900071

    CAS  Article  Google Scholar 

  31. Zhang M, Gillaspy AF, Gipson JR, et al., 2018. Neuroinvasive Listeria monocytogenes infection triggers IFN-activation of microglia and upregulates microglial miR-155. Front Immunol, 9:2751. https://doi.org/10.3389/fimmu.2018.02751

    Article  Google Scholar 

  32. Zhang YY, Zhang MY, Li XQ, et al., 2016. Silencing microRNA-155 attenuates cardiac injury and dysfunction in viral myocarditis via promotion of M2 phenotype polarization of macrophages. Sci Rep, 6:22613. https://doi.org/10.1038/srep22613

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 81701568, 81930041, 81571524, 81872248, and 91842103) and the Zhejiang Provincial Natural Science Foundation of China (Nos. Y15C080001 and Z19H100001). We would also like to thank the Zhejiang Provincial Key Laboratory for Immunity and Inflammatory Diseases for its support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qingqing Wang or Hongchuan Jin.

Additional information

Author contributions

Yuhua LIU, Xiaopeng WAN, Yuan YUAN, Jingjing HUANG, Yijia JIANG, Kaiyue ZHAO, Yan WANG, and Yang LIU performed the experimental research and data analysis. Qingqing WANG and Hongchuan JIN contributed to the study design and data analysis. Yang LIU, Qingqing WANG, and Hongchuan JIN contributed to the writing and editing of the manuscript. All authors have read and approved the final manuscript and, therefore, have full access to all the data in the study and take responsibility for the integrity and security of the data.

Compliance with ethics guidelines

Yuhua LIU, Xiaopeng WAN, Yuan YUAN, Jingjing HUANG, Yijia JIANG, Kaiyue ZHAO, Yan WANG, Yang LIU, Qingqing WANG, and Hongchuan JIN declare that they have no conflict of interest.

This article does not contain any studies with human subjects performed by any of authors.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wan, X., Yuan, Y. et al. Opposite effects of miR-155 in the initial and later stages of lipopolysaccharide (LPS)-induced inflammatory response. J. Zhejiang Univ. Sci. B 22, 590–598 (2021). https://doi.org/10.1631/jzus.B2000826

Download citation

Key words

  • Toll-like receptor 4 (TLR4)
  • Endotoxin tolerance
  • MicroRNA-155 (miR-155)
  • Suppressor of cytokine signaling 1 (SOCS1)
  • Transforming growth factor-β-activated kinase 1-binding protein 2 (TAB2)

关键词

  • Toll样受体4(TLR4)
  • 内毒素耐受
  • miR-155
  • SOCS1
  • TAB2