Cornuside alleviates experimental autoimmune encephalomyelitis by inhibiting Th17 cell infiltration into the central nervous system

山茱萸新苷通过抑制Th17细胞浸润中枢神经系统缓解实验性自身免疫性脑脊髓炎

Abstract

The present study was conducted to clarify the therapeutic effect of cornuside on experimental autoimmune encephalomyelitis (EAE) and its influence on T helper 17 (Th17) cell and regulatory T (Treg) cell infiltration into the central nervous system. Rats were randomly placed into four treatment groups: control, EAE, EAE+cornuside, and EAE+prednisolone. The neurological function scores of rats were assessed daily. On the second day after EAE rats began to show neurological deficit symptoms, the four groups were treated with normal saline, normal saline, cornuside (150 mg/kg), and prednisolone (5 mg/kg), respectively. The treatment was discontinued after two weeks, and the spinal cord was obtained for hematoxylin and eosin (H&E) and luxol fast blue staining, as well as retinoic acid receptor-related orphan receptor γ (RORγ) and forkhead box protein P3 (Foxp3) immunohistochemical staining. Blood was collected for Th17 and Treg cell flow cytometry testing, and the serum levels of interleukin (IL)-17A, IL-10, transforming growth factor-β (TGF-β), IL-6, IL-23, and IL-2 were measured via enzyme-linked immunosorbent assay (ELISA). Compared with rats in the EAE group, rats in the EAE+cornuside and EAE+prednisolone groups began to recover from neurological deficits earlier, and had a greater degree of improvement of symptoms. Focal inflammation, demyelination, and RORγ-positive cell infiltration were reduced by cornuside or prednisolone treatment, whereas the Foxp3-positive cell numbers were not significantly different. Meanwhile, the number of Th17 cells and the IL-17A, IL-6, and IL-23 levels were lower in the blood after cornuside or prednisolone treatment, whereas the number of Treg cells or the levels of IL-10, TGF-β, and IL-2 were not markedly different. Cornuside can alleviate symptoms of EAE neurological deficits through its anti-inflammatory and immunosuppressive effects, and Th17 cells may be one of its therapeutic targets.

Abstract

目的

为了明确山茱萸新苷对实验性自身免疫性脑脊髓炎(EAE)的治疗作用, 以及对Th17和Treg细胞浸润中枢神经系统(CNS)的影响。

创新点

本研究提示山茱萸新苷可以改善EAE大鼠的神经功能缺损症状, 减轻EAE大鼠炎症浸润及脱髓鞘, 并抑制Th17细胞浸润。

方法

使用豚鼠脊髓匀浆乳剂皮下注射Lewis大鼠诱导EAE, 每天进行神经功能评分。待EAE大鼠开始出现神经功能缺损症状的第2天, 4组大鼠(对照组、EAE组、EAE/山茱萸新苷组和EAE/泼尼松龙组)分别接受生理盐水、生理盐水、山茱萸新苷(150 mg/kg)、泼尼松龙(5 mg/kg)治疗, 2周后停止治疗。对大鼠脊髓进行HE和LFB染色, 以及RORγ和Foxp3免疫组化染色, 并通过流式细胞检测血液中Th17和Treg细胞数量, 用酶联免疫吸附法(ELISA)检测血清中白介素17A(IL-17A)、IL-10、转化生长因子β(TGF-β)、IL-6, IL-23和IL-2水平。

结论

山茱萸新苷可以缓解EAE症状, 这可能通过抗炎抗免疫作用产生, 而Th17细胞可能是其发挥作用的靶标之一。因此, 山茱萸新苷存在治疗多发性硬化(MS)的潜在可能性。

This is a preview of subscription content, access via your institution.

References

  1. Balasa R, Barcutean L, Balasa A, et al., 2020. The action of Th17 cells on blood brain barrier in multiple sclerosis and experimental autoimmune encephalomyelitis. Hum Immunol, 81(5):237–243. https://doi.org/10.1016/j.humimm.2020.02.009

    CAS  Article  Google Scholar 

  2. Burrows DJ, McGown A, Jain SA, et al., 2019. Animal models of multiple sclerosis: from rodents to zebrafish. Mult Scler J, 25(3):306–324. https://doi.org/10.1177/1352458518805246

    Article  Google Scholar 

  3. Cerboni S, Gehrmann U, Preite S, et al., 2020. Cytokine-regulated Th17 plasticity in human health and diseases. Immunology, 163(1):13280. https://doi.org/10.1111/imm.13280

    Google Scholar 

  4. Ding HY, Xie YN, Dong Q, et al., 2019. Roles of hyaluronan in cardiovascular and nervous system disorders. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 20(5):428–436. https://doi.org/10.1631/jzus.B1900155

    Article  Google Scholar 

  5. Dobson R, Giovannoni G, 2019. Multiple sclerosis—a review. Eur J Neurol, 26(1):27–40. https://doi.org/10.1111/ene.13819

    CAS  Article  Google Scholar 

  6. Dong Y, Feng ZL, Chen HB, et al., 2018. Corni Fructus: a review of chemical constituents and pharmacological activities. Chin Med, 13:34. https://doi.org/10.1186/s13020-018-0191-z

    Article  Google Scholar 

  7. Durant L, Watford WT, Ramos HL, et al., 2010. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity, 32(5):605–615. https://doi.org/10.1016/j.immuni.2010.05.003

    CAS  Article  Google Scholar 

  8. Fan YP, Wu W, 2014. Syndrome factors of multiple sclerosis in 500 patients. J Beijing Univ Tradit Chin Med, 37(1): 68–72 (in Chinese). https://doi.org/10.3969/j.issn.1006-2157.2014.01.015

    Google Scholar 

  9. Fan YP, Wang SQ, 2018. Standard for clinical diagnosis and treatment of traditional chinese medicine for multiple sclerosis/neuromyelitis optica. J Cap Med Univ, 39(6): 833–835 (in Chinese). https://doi.org/10.3969/j.issn.1006-7795.2018.06.008

    Google Scholar 

  10. Fasching P, Stradner M, Graninger W, et al., 2017. Therapeutic potential of targeting the Th17/Treg axis in autoimmune disorders. Molecules, 22(1):134. https://doi.org/10.3390/molecules22010134

    Article  Google Scholar 

  11. Hauser SL, Cree BAC, 2020. Treatment of multiple sclerosis: a review. Am J Med, 133(12):1380–1390.E2. https://doi.org/10.1016/j.amjmed.2020.05.049

    CAS  Article  Google Scholar 

  12. Huang J, Zhang YW, Dong L, et al., 2018. Ethnopharmacology, phytochemistry, and pharmacology of Cornus officinalis sieb. et Zucc. J Ethnopharmacol, 213:280–301. https://doi.org/10.1016/j.jep.2017.11.010

    CAS  Article  Google Scholar 

  13. Kleinewietfeld M, Hafler DA, 2014. Regulatory T cells in autoimmune neuroinflammation. Immunol Rev, 259(1):231–244. https://doi.org/10.1111/imr.12169

    CAS  Article  Google Scholar 

  14. Kunkl M, Frascolla S, Amormino C, et al., 2020. T helper cells: the modulators of inflammation in multiple sclerosis. Cells, 9(2):482. https://doi.org/10.3390/cells9020482

    CAS  Article  Google Scholar 

  15. Lassmann H, Bradl M, 2017. Multiple sclerosis: experimental models and reality. Acta Neuropathol, 133(2):223–244. https://doi.org/10.1007/s00401-016-1631-4

    CAS  Article  Google Scholar 

  16. Lee GR, 2018. The balance of Th17 versus Treg cells in auto-immunity. Int J Mol Sci, 19(3):730. https://doi.org/10.3390/ijms19030730

    Article  Google Scholar 

  17. Li HH, Hu FL, Zhang YL, et al., 2020. Comparative efficacy and acceptability of disease-modifying therapies in patients with relapsing-remitting multiple sclerosis: a systematic review and network meta-analysis. J Neurol, 267(12):3489–3498. https://doi.org/10.1007/s00415-019-09395-w

    Article  Google Scholar 

  18. Li ZF, Nie LL, Chen LP, et al., 2019. Rapamycin relieves inflammation of experimental autoimmune encephalomyelitis by altering the balance of Treg/Th17 in a mouse model. Neurosci Lett, 705:39–45. https://doi.org/10.1016/j.neulet.2019.04.035

    CAS  Article  Google Scholar 

  19. McCall B, 2019. Alemtuzumab to be restricted pending review, says EMA. Lancet, 393(10182):1683. https://doi.org/10.1016/S0140-6736(19)30935-3

    Article  Google Scholar 

  20. McCool R, Wilson K, Arber M, et al., 2019. Systematic review and network meta-analysis comparing ocrelizumab with other treatments for relapsing multiple sclerosis. Mult Scler Relat Disord, 29:55–61. https://doi.org/10.1016/j.msard.2018.12.040

    Article  Google Scholar 

  21. Monaco S, Nicholas R, Reynolds R, et al., 2020. Intrathecal inflammation in progressive multiple sclerosis. Int J Mol Sci, 21(21):8217. https://doi.org/10.3390/ijms21218217

    CAS  Article  Google Scholar 

  22. Moser T, Akgün K, Proschmann U, et al., 2020. The role of Th17 cells in multiple sclerosis: therapeutic implications. Autoimmun Rev, 19(10):102647. https://doi.org/10.1016/j.autrev.2020.102647

    CAS  Article  Google Scholar 

  23. Oh J, Vidal-Jordana A, Montalban X, 2018. Multiple sclerosis: clinical aspects. Curr Opin Neurol, 31(6):752–759. https://doi.org/10.1097/WCO.0000000000000622

    Article  Google Scholar 

  24. Park JS, Lee J, Lim MA, et al., 2014. JAK2-STAT3 blockade by AG490 suppresses autoimmune arthritis in mice via reciprocal regulation of regulatory T cells and Th17 cells. J Immunol, 192(9):4417–4424. https://doi.org/10.4049/jimmunol.1300514

    CAS  Article  Google Scholar 

  25. Pawlak M, Ho AW, Kuchroo VK, 2020. Cytokines and transcription factors in the differentiation of CD4+ T helper cell subsets and induction of tissue inflammation and autoimmunity. Curr Opin Immunol, 67:57–67. https://doi.org/10.1016/j.coi.2020.09.001

    CAS  Article  Google Scholar 

  26. Pegoretti V, Swanson KA, Bethea JR, et al., 2020. Inflammation and oxidative stress in multiple sclerosis: consequences for therapy development. Oxid Med Cell Longev, 2020:7191080. https://doi.org/10.1155/2020/7191080

    Article  Google Scholar 

  27. Pitarokoili K, Ambrosius B, Gold R, 2017. Lewis rat model of experimental autoimmune encephalomyelitis. Curr Protoc Neurosci, 81:9.61.1–9.61.20. https://doi.org/10.1002/cpns.36

    CAS  Article  Google Scholar 

  28. Pulido-Valdeolivas I, Andorrà M, Gómez-Andrés D, et al., 2020. Retinal and brain damage during multiple sclerosis course: inflammatory activity is a key factor in the first 5 years. Sci Rep, 10:13333. https://doi.org/10.1038/s41598-020-70255-z

    CAS  Article  Google Scholar 

  29. Qu Z, Zheng N, Zhang YF, et al., 2016. Preventing the BDNF and NGF loss involved in the effects of cornel iridoid glycoside on attenuation of experimental autoimmune encephalomyelitis in mice. Neurol Res, 38(9):831–837. https://doi.org/10.1080/01616412.2016.1200766

    CAS  Article  Google Scholar 

  30. Qu Z, Zheng N, Wei YZ, et al., 2019. Effect of cornel iridoid glycoside on microglia activation through suppression of the JAK/STAT signalling pathway. J Neuroimmunol, 330: 96–107. https://doi.org/10.1016/j.jneuroim.2019.01.014

    CAS  Article  Google Scholar 

  31. Ruiz F, Vigne S, Pot C, 2019. Resolution of inflammation during multiple sclerosis. Semin Immunopathol, 41(6):711–726. https://doi.org/10.1007/s00281-019-00765-0

    CAS  Article  Google Scholar 

  32. Schneider C, Schuetz G, Zollner TM, 2009. Acute neuroinflammation in lewis rats—a model for acute multiple sclerosis relapses. J Neuroimmunol, 213(1–2):84–90. https://doi.org/10.1016/j.jneuroim.2009.05.015

    CAS  Article  Google Scholar 

  33. Segal BM, 2019. The diversity of encephalitogenic CD4+ T cells in multiple sclerosis and its animal models. J Clin Med, 8(1):120. https://doi.org/10.3390/jcm8010120

    CAS  Article  Google Scholar 

  34. Stenager E, 2019. A global perspective on the burden of multiple sclerosis. Lancet Neurol, 18(3):227–228. https://doi.org/10.1016/S1474-4422(18)30498-8

    Article  Google Scholar 

  35. Xie XJ, Ye YF, Zhou L, et al., 2010. Th17 promotes acute rejection following liver transplantation in rats. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 11(11):819–827. https://doi.org/10.1631/jzus.B1000030

    CAS  Article  Google Scholar 

  36. Yin LL, Chen YY, Qu Z, et al., 2014. Involvement of JAK/STAT signaling in the effect of cornel iridoid glycoside on experimental autoimmune encephalomyelitis amelioration in rats. J Neuroimmunol, 274(1–2):28–37. https://doi.org/10.1016/j.jneuroim.2014.06.022

    CAS  Article  Google Scholar 

  37. Zhao PY, Wang YQ, Liu XH, et al., 2018. Bu Shen Yi Sui capsule promotes remyelination correlating with Sema3A/NRP-1, LIF/LIFR and Nkx6.2 in mice with experimental autoimmune encephalomyelitis. J Ethnopharmacol, 217:36–48. https://doi.org/10.1016/j.jep.2018.02.014

    Article  Google Scholar 

  38. Zhao ST, Wang CZ, 2018. Regulatory T cells and asthma. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 19(9):663–673. https://doi.org/10.1631/jzus.B1700346

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Traditional Chinese Medical Science and Technology Project of Zhejiang Province (No. 2019ZA063) and the Scientific Research Fund of Zhejiang Chinese Medical University (No. 2019ZY09), China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qiang Yuan.

Additional information

Author contributions

Rongbo ZHANG and Qiang YUAN designed the study. Jin LIU and Bin XU established the animal models. Rongbo ZHANG and Jin LIU performed the experimental research, and wrote and edited the manuscript. You WU and Shunli LIANG contributed to the data analysis. All authors have read and approved the final manuscript and, therefore, have full access to all the data in the study and take responsibility for the integrity and security of the data.

Compliance with ethics guidelines

Rongbo ZHANG, Jin LIU, Bin XU, You WU, Shunli LIANG, and Qiang YUAN declare that they have no conflict of interest.

All institutional and national guidelines for the care and use of laboratory animals were followed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Liu, J., Xu, B. et al. Cornuside alleviates experimental autoimmune encephalomyelitis by inhibiting Th17 cell infiltration into the central nervous system. J. Zhejiang Univ. Sci. B 22, 421–430 (2021). https://doi.org/10.1631/jzus.B2000771

Download citation

Key words

  • Cornuside
  • Experimental autoimmune encephalomyelitis
  • Multiple sclerosis
  • Inflammation

关键词

  • 山茱萸新苷
  • 实验性自身免疫性脑脊髓炎
  • 多发性硬化
  • 炎症