Skip to main content

Evaluation of the prognostic ability of serum uric acid for elderly acute coronary syndrome patients with diabetes mellitus: a prospective cohort study

血清尿酸对合并糖尿病的高龄急性冠状动脉综合征患者预后能力的评价:一项前瞻性队列研究

Abstract

Objective: This study evaluated the prognostic power of serum uric acid (UA) in predicting adverse events in elderly acute coronary syndrome (ACS) patients with diabetes mellitus (DM). Methods: The analysis involved 718 ACS patients >80 years old whose general clinical data and baseline blood biochemical indicators were collected prospectively from January 2006 to December 2012. These patients were classified into two groups based on DM status, and then followed up after discharge. The Kaplan-Meier method was used for major adverse cardiac event (MACE) rates and all-cause mortality. Multivariate Cox regression was performed to analyze the relationship between UA level and long-term clinical prognosis. Receiver operating characteristic (ROC) curves were analyzed to predict the cutoff value of UA in elderly ACS patients with DM. There were 242 and 476 patients in the DM and non-DM (NDM) groups, respectively, and the follow-up time after discharge was 40–120 months (median, 63 months; interquartile range, 51–74 months). Results: The all-cause mortality, cardiac mortality, and MACE rates in both DM and NDM patients were higher than those in the control group (P=0.001). All-cause mortalities, cardiac mortalities, and MACE rates in DM patients with moderate and high UA levels were significantly higher than those in the NDM group (P=0.001). Long-term survival rates decreased significantly with increased UA levels in the ACS groups (P=0.001). UA (odds ratio (OR)=2.106, 95% confidence interval (CI)=1.244–3.568, P=0.006) was found to be an independent risk factor for all-cause mortality and MACE in elderly ACS patients with DM. The cutoff value of UA was 353.6 μmol/L (sensitivity, 67.4%; specificity, 65.7%). Conclusions: Serum UA level is a strong independent predictor of long-term all-cause death and MACE in elderly ACS patients with DM.

Abstract

目的

评估血清尿酸水平在合并糖尿病的高龄急性冠脉综合征(ACS)患者长期预后的预测能力.

创新点

首次探究血清尿酸水平对合并糖尿病的高龄ACS这一特定人群长期预后的预测能力.

方法

选取中国人民解放军总医院心脏中心2006年1月至2012年12月收治的718例80岁以上的ACS患者, 采集入院时的一般临床资料和基线血液生化指标. 根据患者是否合并糖尿病进行分组并进行长期随访, 记录患者的全因死亡和主要不良心脏事件(MACE). 采用Kaplan-Meier法分析MACE发生率和全因死亡率;采用多因素Cox回归分析血清尿酸水平与远期临床预后的关系;分析受试者工作特征曲线, 预测高龄合并糖尿病的ACS患者的血清尿酸诊断界值.

结论

血清尿酸基线水平是合并糖尿病的高龄ACS患者长期全因死亡和MACE的独立预测因子.

This is a preview of subscription content, access via your institution.

References

  1. Bailey CJ, 2019. Uric acid and the cardio-renal effects of SGLT2 inhibitors. Diabetes Obes Metab, 21(6): 1291–1298. https://doi.org/10.1111/dom.13670

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. Bonaca MP, Gutierrez JA, Cannon C, et al., 2018. Polyvascular disease, type 2 diabetes, and long-term vascular risk: a secondary analysis of the IMPROVE-IT TRIAL. Lancet Diabetes Endocrinol, 6(12):934–943. https://doi.org/10.1016/S2213-8587(18)30290-0

    PubMed  Article  PubMed Central  Google Scholar 

  3. Cicero AFG, Fogacci F, Giovannini M, et al., 2018. Serum uric acid predicts incident metabolic syndrome in the elderly in an analysis of the Brisighella Heart Study. Sci Rep, 8:11529. https://doi.org/10.1038/s41598-018-29955-w

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. Contreras-Zentella ML, Sánchez-Sevilla L, Suárez-Cuenca JA, et al., 2019. The role of oxidant stress and gender in the erythrocyte arginine metabolism and ammonia management in patients with type 2 diabetes. PLoS ONE, 14(7): e0219481. https://doi.org/10.1371/journal.pone.0219481

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Fiorentino TV, Sesti F, Succurro E, et al., 2018. Higher serum levels of uric acid are associated with a reduced insulin clearance in non-diabetic individuals. Acta Diabetol, 55(8):835–842. https://doi.org/10.1007/s00592-018-1153-8

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. Fu ZH, Xue H, Guo J, et al., 2013. Long-term prognostic impact of cystatin C on acute coronary syndrome octogenarians with diabetes mellitus. Cardiovasc Diabetol, 12:157. https://doi.org/10.1186/1475-2840-12-157

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. Gertler MM, Garn SM, Levine SA, 1951. Serum uric acid in relation to age and physique in health and in coronary heart disease. Ann Intern Med, 34(6): 1421–1431. https://doi.org/10.7326/0003-4819-34-6-1421

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. Grossman C, Grossman E, Goldbourt U, 2019. Uric acid variability at midlife as an independent predictor of coronary heart disease and all-cause mortality. PLoS ONE, 14(8): e0220532. https://doi.org/10.1371/journal.pone.0220532

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Guo XX, Wang Y, Wang K, et al., 2018. Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 19(7):559–569. https://doi.org/10.1631/jzus.B1700254

    CAS  Article  Google Scholar 

  10. Guo XZ, Qin Y, Zheng K, et al., 2014. Improved glomerular filtration rate estimation using new equations combined with standardized cystatin C and creatinine in Chinese adult chronic kidney disease patients. Clin Biochem, 47(13–14): 1220–1226. https://doi.org/10.1016/j.clinbiochem.2014.05.060

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. Jin DY, Liu CL, Tang JN, et al., 2017. Interleukin-18, matrix metalloproteinase-22 and -29 are independent risk factors of human coronary heart disease. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 18(8):685–695. https://doi.org/10.1631/jzus.B1700073

    CAS  Article  Google Scholar 

  12. Keerman M, Yang F, Hu H, et al., 2020. Mendelian randomization study of serum uric acid levels and diabetes risk: evidence from the Dongfeng-Tongji cohort. BMJ Open Diabetes Res Care, 8:e000834. https://doi.org/10.1136/bmjdrc-2019-000834

    PubMed  PubMed Central  Article  Google Scholar 

  13. Kimura Y, Yanagida T, Onda A, et al., 2020. Soluble uric acid promotes atherosclerosis via AMPK (AMP-activated protein kinase)-mediated inflammation. Arterioscler Thromb Vasc Biol, 40(3):570–582. https://doi.org/10.1161/ATVBAHA.119.313224

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. Komaru Y, Takeuchi T, Suzuki L, et al., 2019. Recurrent cardiovascular events in patients with newly diagnosed acute coronary syndrome: influence of diabetes and its management with medication. J Diabetes Complications, 34(3):107511. https://doi.org/10.1016/j.jdiacomp.2019.107511

    PubMed  Article  PubMed Central  Google Scholar 

  15. Kramer CK, von Mühlen D, Jassal SK, et al., 2010. A prospective study of uric acid by glucose tolerance status and survival: the Rancho Bernardo Study. J Intern Med, 267(6):561–566. https://doi.org/10.1111/j.1365-2796.2009.02168.x

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. Lazzeroni D, Bini M, Camaiora U, et al., 2018. Serum uric acid level predicts adverse outcomes after myocardial revascularization or cardiac valve surgery. Eur J Prev Cardiol, 25(2):119–126. https://doi.org/10.1177/2047487317744045

    PubMed  Article  PubMed Central  Google Scholar 

  17. Levantesi G, Marfisi RM, Franzosi MG, et al., 2013. Uric acid: a cardiovascular risk factor in patients with recent myocardial infarction. Int J Cardiol, 167(1):262–269. https://doi.org/10.1016/j.ijcard.2011.12.110

    PubMed  Article  PubMed Central  Google Scholar 

  18. Lu TY, Forgetta V, Yu OHY, et al., 2020. Polygenic risk for coronary heart disease acts through atherosclerosis in type 2 diabetes. Cardiovasc Diabetol, 19:12. https://doi.org/10.1186/s12933-020-0988-9

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Ma YC, Zuo L, Chen JH, et al., 2006. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol, 17(10): 2937–2944. https://doi.org/10.1681/ASN.2006040368

    PubMed  Article  PubMed Central  Google Scholar 

  20. Mani P, Puri R, Schwartz GG, et al., 2019. Association of initial and serial C-reactive protein levels with adverse cardiovascular events and death after acute coronary syndrome: a secondary analysis of the VISTA-16 trial. JAMA Cardiol, 4(4):314–320. https://doi.org/10.1001/jamacardio.2019.0179

    PubMed  PubMed Central  Article  Google Scholar 

  21. National Center for Cardiovascular Diseases, 2021. Annual report on cardiovascular health and diseases in China (2020). J Cardiovasc Med (Hagerstown), 3:276 (in Chinese).

    Google Scholar 

  22. Ndrepepa G, 2018. Uric acid and cardiovascular disease. Clinica Chimica Acta, 484:150–163. https://doi.org/10.1016/j.cca.2018.05.046

    CAS  Article  Google Scholar 

  23. Nishida Y, Takahashi Y, Susa N, et al., 2013. Comparative effect of angiotensin II type I receptor blockers on serum uric acid in hypertensive patients with type 2 diabetes mellitus: a retrospective observational study. Cardiovasc Diabetol, 12:159. https://doi.org/10.1186/1475-2840-12-159

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. Perticone F, Sciacqua A, Perticone M, et al., 2012. Serum uric acid and 1-h postload glucose in essential hypertension. Diabetes Care, 35(1):153–157. https://doi.org/10.2337/dc11-1727

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Pullinger CR, O’Connor PM, Naya-Vigne JM, et al., 2021. Levels of prebeta-1 high-density lipoprotein are a strong independent positive risk factor for coronary heart disease and myocardial infarction: a meta-analysis. J Am Heart Assoc, 10(7):e018381. https://doi.org/10.1161/JAHA.120.018381

    PubMed  PubMed Central  Article  Google Scholar 

  26. Purnima S, El-Aal BGA, 2016. Serum uric acid as prognostic marker of coronary heart disease (CHD). Clin Investig Arterioscler, 28(5):216–224. https://doi.org/10.1016/j.arteri.2016.05.006

    PubMed  PubMed Central  Google Scholar 

  27. Ruszkowska-Ciastek B, Sokup A, Wernik T, et al., 2015. Effect of uncontrolled hyperglycemia on levels of adhesion molecules in patients with diabetes mellitus type 2. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 16(5):355–361. https://doi.org/10.1631/jzus.B1400218

    CAS  Article  Google Scholar 

  28. Saito Y, Kitahara H, Nakayama T, et al., 2019. Relation of elevated serum uric acid level to endothelial dysfunction in patients with acute coronary syndrome. J Atheroscler Thromb, 26(4):362–367. https://doi.org/10.5551/jat.45179

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Sethi SS, Akl EG, Farkouh ME, 2012. Diabetes mellitus and acute coronary syndrome: lessons from randomized clinical trials. Curr Diab Rep, 12(3):294–304. https://doi.org/10.1007/s11892-012-0272-9

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. Spiga R, Marini MA, Mancuso E, et al., 2017. Uric acid is associated with inflammatory biomarkers and induces inflammation via activating the NF-κB signaling pathway in HepG2 cells. Arterioscler Thromb Vasc Biol, 37(6): 1241–1249. https://doi.org/10.1161/ATVBAHA.117.309128

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. Tassone EJ, Cimellaro A, Perticone M, et al., 2018. Uric acid impairs insulin signaling by promoting ENPP1 binding to insulin receptor in human umbilical vein endothelial cells. Front Endocrinol (Lausanne), 9:98. https://doi.org/10.3389/fendo.2018.00098

    Article  Google Scholar 

  32. Timóteo AT, Lousinha A, Labandeiro J, et al., 2013. Serum uric acid: a forgotten prognostic marker in acute coronary syndromes? Eur Heart J Acute Cardiovasc Care, 2(1): 44–52. https://doi.org/10.1177/2048872612474921

    PubMed  PubMed Central  Article  Google Scholar 

  33. Tscharre M, Herman R, Rohla M, et al., 2018. Uric acid is associated with long-term adverse cardiovascular outcomes in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Atherosclerosis, 270: 173–179. https://doi.org/10.1016/j.atherosclerosis.2018.02.003

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. Tsujita K, Yamanaga K, Komura N, et al., 2016. Lipid profile associated with coronary plaque regression in patients with acute coronary syndrome: subanalysis of PRECISE-IVUS trial. Atherosclerosis, 251:367–372. https://doi.org/10.1016/j.atherosclerosis.2016.05.025

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. Verma S, Ji QH, Bhatt DL, et al., 2020. Association between uric acid levels and cardio-renal outcomes and death in patients with type 2 diabetes: a subanalysis of EMPA-REG OUTCOME. Diabetes Obes Metab, 22(7): 1207–1214. https://doi.org/10.1111/dom.13991

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Wang CW, Yan WL, Wang H, et al., 2019. APOE polymorphism is associated with blood lipid and serum uric acid metabolism in hypertension or coronary heart disease in a Chinese population. Pharmacogenomics, 20(14): 1021–1031. https://doi.org/10.2217/pgs-2019-0048

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. Wang RJ, Song YX, Yan YQ, et al., 2016. Elevated serum uric acid and risk of cardiovascular or all-cause mortality in people with suspected or definite coronary artery disease: a meta-analysis. Atherosclerosis, 254:193–199. https://doi.org/10.1016/j.atherosclerosis.2016.10.006

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. Wannamethee SG, Papacosta O, Lennon L, et al., 2018. Serum uric acid as a potential marker for heart failure risk in men on antihypertensive treatment: the British Regional Heart Study. Int J Cardiol, 252:187–192. https://doi.org/10.1016/j.ijcard.2017.11.083

    PubMed  PubMed Central  Article  Google Scholar 

  39. Wei XB, Jiang L, Liu YH, et al., 2017. Serum uric acid as a simple risk factor in patients with rheumatic heart disease undergoing valve replacement surgery. Clin Chim Acta, 472: 69–74. https://doi.org/10.1016/j.cca.2017.07.019

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. Xu RJ, Kong WM, An XF, et al., 2020. Physiologically-based pharmacokinetic-pharmacodynamics model characterizing CYP2C19 polymorphisms to predict clopidogrel pharmacokinetics and its anti-platelet aggregation effect following oral administration to coronary artery disease patients with or without diabetes. Front Pharmacol, 11:593982. https://doi.org/10.3389/fphar.2020.593982

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Yu W, Cheng JD, 2020. Uric acid and cardiovascular disease: an update from molecular mechanism to clinical perspective. Front Pharmacol, 11:582680. https://doi.org/10.3389/fphar.2020.582680

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Zhao ZL, Zhao YS, Zhang YQ, et al., 2021. Gout-induced endothelial impairment: the role of SREBP2 transactivation of YAP. FASEB J, 35(6):e21613. https://doi.org/10.1096/fj.202100337R

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. Zhou X, Li JQ, Wei LJ, et al., 2020. Silencing of DsbA-L gene impairs the PPARγ agonist function of improving insulin resistance in a high-glucose cell model. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(12):990–998. https://doi.org/10.1631/jzus.B2000432

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank the patient advisers for the information they provided.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qing Xi or Zhenhong Fu.

Additional information

Author contributions

Zhenhong FU and Qing XI planned the study, and wrote and edited the manuscript. Yang JIAO and Jihang WANG performed the experimental research and data analysis, and wrote and edited the manuscript. Mingzhi SHEN, Hao XUE, Wei DONG, and Jun GUO conducted a survey, and provided samples and other logistics support. Qing XI, Xia YANG, and Yundai CHEN contributed to the drafting and participated in research discussion. All authors have read and approved the final manuscript, and therefore, have full access to all the data in the study and take responsibility for the integrity and security of the data.

Compliance with ethics guidelines

Yang JIAO, Jihang WANG, Xia YANG, Mingzhi SHEN, Hao XUE, Jun GUO, Wei DONG, Yundai CHEN, Qing XI, and Zhenhong FU declare that they have no conflict of interest.

The study was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments and was approved by the Ethics Service Center of the Chinese PLA General Hospital in China. Written informed consent was obtained from all participants.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Wang, J., Yang, X. et al. Evaluation of the prognostic ability of serum uric acid for elderly acute coronary syndrome patients with diabetes mellitus: a prospective cohort study. J. Zhejiang Univ. Sci. B 22, 856–865 (2021). https://doi.org/10.1631/jzus.B2000637

Download citation

Key words

  • Uric acid
  • Elderly patient
  • Acute coronary syndrome
  • Diabetes mellitus
  • Prognosis

关键词

  • 尿酸
  • 高龄病人
  • 急性冠脉综合征
  • 糖尿病
  • 预后