Skip to main content

3D-printed models improve surgical planning for correction of severe postburn ankle contracture with an external fixator

3D打印模型促进外固定架矫正严重烧伤后踝关节挛缩的手术设计

Abstract

Gradual distraction with an external fixator is a widely used treatment for severe postburn ankle contracture (SPAC). However, application of external fixators is complex, and conventional two-dimensional (2D) imaging-based surgical planning is not particularly helpful due to a lack of spatial geometry. The purpose of this study was to evaluate the surgical planning process for this procedure with patient-specific three-dimension-printed models (3DPMs). In this study, patients coming from two centers were divided into two cohorts (3DPM group vs. control group) depending on whether a 3DPM was used for preoperative surgical planning. Operation duration, improvement in metatarsal-tibial angle (MTA), range of motion (ROM), the American Orthopedic Foot and Ankle Society (AOFAS) scores, complications, and patient-reported satisfaction were compared between two groups. The 3DPM group had significantly shorter operation duration than the control group ((2.0±0.3) h vs. (3.2± 0.3) h, P<0.01). MTA, ROM, and AOFAS scores between the two groups showed no significant differences pre-operation, after the removal of the external fixator, or at follow-up. Plantigrade feet were achieved and gait was substantially improved in all patients at the final follow-up. Pin-tract infections occurred in two patients (one in each group) during distraction and were treated with wound care and oral antibiotics. Patients in the 3DPM group reported higher satisfaction than those in the control group, owing to better patient-surgeon communication. Surgical planning using patient-specific 3DPMs significantly reduced operation duration and increased patient satisfaction, while providing similar improvements in ankle movement and function compared to traditional surgical planning for the correction of SPAC with external fixators.

Abstract

目的

评估个体化3D打印模型辅助的手术设计在治疗严重烧伤后踝关节挛缩中的作用.

创新点

首次将3D打印模型应用于矫正严重烧伤后踝关节挛缩手术设计中. 3D打印模型辅助手术设计显著缩短了手术时间, 提高了患者满意度.

方法

本研究纳入了来自解放军总医院第一医学中心和空军军医大学第一附属医院的10名患者. 根据术前是否使用3D打印模型进行手术设计, 将患者分为两组(3D打印模型组和传统手术组). 研究的主要结局指标是手术时间. 其他结局指标包括跖胫骨角(MTA)、 踝关节活动范围(ROM)、 美国骨科足踝协会评分(AOFAS scores)、 并发症和患者满意度.

结论

与传统术前手术计划相比, 使用定制3D打印模型的手术设计显著缩短了手术时间, 提高了患者满意度. 两组踝关节运动和功能方面改善程度无差别.

This is a preview of subscription content, access via your institution.

References

  1. Bava E, Charlton T, Thordarson D, 2010. Ankle fracture syndesmosis fixation and management: the current practice of orthopedic surgeons. Am J Orthop, 39(5):242–246.

    PubMed  PubMed Central  Google Scholar 

  2. Burzyńska K, Morasiewicz P, Filipiak J, 2016. The use of 3D printing technology in the Ilizarov method treatment: pilot study. Adv Clin Exp Med, 25(6):1157–1163. https://doi.org/10.17219/acem/64024

    PubMed  Article  PubMed Central  Google Scholar 

  3. Calhoun JH, Evans EB, Herndon DN, 1992. Techniques for the management of burn contractures with the Ilizarov fixator. Clin Orthop Relat Res, 280:117–124. https://doi.org/10.1097/00003086-199207000-00014

    Google Scholar 

  4. Carmichael KD, Maxwell SC, Calhoun JH, 2005. Recurrence rates of burn contracture ankle equinus and other foot deformities in children treated with Ilizarov fixation. J Pediatr Orthop, 25(4):523–528. https://doi.org/10.1097/01.bpo.0000161093.31092.c4

    PubMed  Article  PubMed Central  Google Scholar 

  5. Corona PS, Vicente M, Tetsworth K, et al., 2018. Preliminary results using patient-specific 3D printed models to improve preoperative planning for correction of post-traumatic tibial deformities with circular frames. Injury, 49(S2):S51–S59. https://doi.org/10.1016/j.injury.2018.07.017

    PubMed  Article  PubMed Central  Google Scholar 

  6. Cutroneo G, Bruschetta D, Trimarchi F, et al., 2016. In vivo CT direct volume rendering: a three-dimensional anatomical description of the heart. Pol J Radiol, 81:21–28. https://doi.org/10.12659/pjr.895476

    PubMed  PubMed Central  Article  Google Scholar 

  7. Duan XJ, Fan HQ, Wang FY, et al., 2019. Application of 3D-printed customized guides in subtalar joint arthrodesis. Orthop Surg, 11(3):405–413. https://doi.org/10.1111/os.12464

    PubMed  PubMed Central  Article  Google Scholar 

  8. Ferreira RC, Costa MT, 2009. Recurrent clubfoot-approach and treatment with external fixation. Foot Ankle Clin, 14(3):435–445. https://doi.org/10.1016/j.fcl.2009.03.009

    PubMed  Article  PubMed Central  Google Scholar 

  9. Fitzhugh A, Naveed H, Davagnanam I, et al., 2016. Proposed three-dimensional model of the orbit and relevance to orbital fracture repair. Surg Radiol Anat, 38(5):557–561. https://doi.org/10.1007/s00276-015-1561-1

    PubMed  Article  PubMed Central  Google Scholar 

  10. Ganguli A, Pagan-Diaz GJ, Grant L, et al., 2018. 3D printing for preoperative planning and surgical training: a review. Biomed Microdevices, 20(3):65. https://doi.org/10.1007/s10544-018-0301-9

    PubMed  Article  PubMed Central  Google Scholar 

  11. Goldstein RY, Jordan CJ, McLaurin TM, et al., 2013. The evolution of the Ilizarov technique: part 2: the principles of distraction osteosynthesis. Bull Hosp Jt Dis, 71(1):96–103.

    Google Scholar 

  12. Gu BK, Choi DJ, Park SJ, et al., 2016. 3-Dimensional bioprinting for tissue engineering applications. Biomater Res, 20:12. https://doi.org/10.1186/s40824-016-0058-2

    Article  CAS  Google Scholar 

  13. Huang SC, 1996. Soft tissue contractures of the knee or ankle treated by the Ilizarov technique: high recurrence rate in 26 patients followed for 3–6 years. Acta Orthop Scand, 67(5):443–449. https://doi.org/10.3109/17453679608996665

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. Ilizarov GA, 1988. The principles of the Ilizarov method. Bull Hosp Jt Dis Orthop Inst, 48(1):1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jordan CJ, Goldstein RY, McLaurin TM, et al., 2013. The evolution of the Ilizarov technique: part 1: the history of limb lengthening. Bull Hosp Jt Dis, 71(1):89–95.

    Google Scholar 

  16. Khodzhakulov CR, Fazlitdinov N, Sakhabutdinov G, 1991. The surgical treatment of postburn deformities of the foot and ankle joint. Klin Khir, 12:34–35.

    Google Scholar 

  17. Kitaoka HB, Alexander IJ, Adelaar RS, et al., 1994. Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int, 15(7):349–353. https://doi.org/10.1177/107110079401500701

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Kocaoglu M, Eralp L, Atalar AC, et al., 2002. Correction of complex foot deformities using the Ilizarov external fixator. J Foot Ankle Surg, 41(1):30–39. https://doi.org/10.1016/s1067-2516(02)80007-2

    PubMed  Article  PubMed Central  Google Scholar 

  19. Korp K, Richard R, Hawkins D, 2015. Refining the idiom “functional range of motion” related to burn recovery. J Burn Care Res, 36(3):e136–e145. https://doi.org/10.1097/bcr.0000000000000149

    PubMed  Article  PubMed Central  Google Scholar 

  20. Liu JG, Zhou HT, Qin HQ, et al., 2018. Comparative study of clinical efficacy using three-dimensional and two-dimensional laparoscopies in the treatment of distal gastric cancer. OncoTargets Ther, 11:301–306. https://doi.org/10.2147/ott.S153520

    Article  Google Scholar 

  21. Liu P, Hu ZC, Huang SB, et al., 2020. Application of 3D printed models of complex hypertrophic scars for pre-operative evaluation and surgical planning. Front Bioeng Biotechnol, 8:115. https://doi.org/10.3389/fbioe.2020.00115

    PubMed  PubMed Central  Article  Google Scholar 

  22. Morasiewicz P, Konieczny G, Dejnek M, et al., 2018. Assessment of the distribution of load on the lower limbs and balance before and after ankle arthrodesis with the Ilizarov method. Sci Rep, 8:15693. https://doi.org/10.1038/s41598-018-34016-3

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. Paley D, Lamm BM, Katsenis D, et al., 2006. Treatment of malunion and nonunion at the site of an ankle fusion with the Ilizarov apparatus. J Bone Joint Surg, 88(1):119–134. https://doi.org/10.2106/jbjs.E.00862

    PubMed  Article  PubMed Central  Google Scholar 

  24. Pehde CE, Bennett J, Lee Peck B, et al., 2020. Development of a 3-D printing laboratory for foot and ankle applications. Clin Podiatr Med Surg, 37(2):195–213. https://doi.org/10.1016/j.cpm.2019.12.011

    PubMed  Article  PubMed Central  Google Scholar 

  25. Peng WM, Liu YF, Jiang XF, et al., 2019. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 20(8):647–659. https://doi.org/10.1631/jzus.B1800622

    CAS  Article  Google Scholar 

  26. Pfeffer GB, Michalski MP, Basak T, et al., 2018. Use of 3D prints to compare the efficacy of three different calcaneal osteotomies for the correction of heel varus. Foot Ankle Int, 39(5):591–597. https://doi.org/10.1177/1071100717753622

    PubMed  Article  PubMed Central  Google Scholar 

  27. Pfeil A, Lehmann G, Lange U, 2018. Update DVO guidelines 2017 on “Prophylaxis, diagnostics and treatment of osteoporosis in postmenopausal women and men”: what is new, what remains for rheumatologists? Z Rheumatol, 77(9):759–763. https://doi.org/10.1007/s00393-018-0549-8

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. Ploch CC, Mansi CSSA, Jayamohan J, et al., 2016. Using 3D printing to create personalized brain models for neurosurgical training and preoperative planning. World Neurosurg, 90: 668–674. https://doi.org/10.1016/j.wneu.2016.02.081

    PubMed  Article  PubMed Central  Google Scholar 

  29. Qiu B, Liu F, Tang B, et al., 2017. Clinical study of 3D imaging and 3D printing technique for patient-specific instrumentation in total knee arthroplasty. J Knee Surg, 30(8):822–828. https://doi.org/10.1055/s-0036-1597980

    PubMed  Article  PubMed Central  Google Scholar 

  30. Rashaan ZM, Stekelenburg CM, van der Wal MBA, et al., 2016. Three-dimensional imaging: a novel, valid, and reliable technique for measuring wound surface area. Skin Res Technol, 22(4):443–450. https://doi.org/10.1111/srt.12285

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. Refai MA, Song SH, Song HR, 2012. Does short-term application of an Ilizarov frame with transfixion pins correct relapsed clubfoot in children? Clin Orthop Relat Res, 470(7):1992–1999. https://doi.org/10.1007/s11999-012-2289-4

    Article  Google Scholar 

  32. Richtr M, Sosna A, Rysavý M, 1992. Arthrodesis of the ankle by a tibiometatarsal frame. Acta Chir Orthop Traumatol Cech, 59(5):272–279.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Saghieh S, el Bitar Y, Berjawi G, et al., 2011. Distraction histogenesis in ankle burn deformities. J Burn Care Res, 32(1):160–165. https://doi.org/10.1097/BCR.0b013e31820334c7

    PubMed  Article  PubMed Central  Google Scholar 

  34. Schepers RH, Kraeima J, Vissink A, et al., 2016. Accuracy of secondary maxillofacial reconstruction with prefabricated fibula grafts using 3D planning and guided reconstruction. J Craniomaxillofac Surg, 44(4):392–399. https://doi.org/10.1016/j.jcms.2015.12.008

    PubMed  Article  PubMed Central  Google Scholar 

  35. Sobrón FB, Benjumea A, Alonso MB, et al., 2019. 3D printing surgical guide for talocalcaneal coalition resection: technique tip. Foot Ankle Int, 40(6):727–732. https://doi.org/10.1177/1071100719833665

    PubMed  Article  PubMed Central  Google Scholar 

  36. Steinwender G, Saraph V, Zwick EB, et al., 2001. Complex foot deformities associated with soft-tissue scarring in children. J Foot Ankle Surg, 40(1):42–49. https://doi.org/10.1016/s1067-2516(01)80040-5

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. Tan JL, Chen J, Zhou JY, et al., 2019. Joint contractures in severe burn patients with early rehabilitation intervention in one of the largest burn intensive care unit in China: a descriptive analysis. Burns Trauma, 7:17. https://doi.org/10.1186/s41038-019-0151-6

    PubMed  PubMed Central  Article  Google Scholar 

  38. van Roermund PM, van Valburg AA, Duivemann E, et al., 1998. Function of stiff joints may be restored by Ilizarov joint distraction. Clin Orthop Relat Res, 348:220–227.

    Article  Google Scholar 

  39. von Elm E, Altman DG, Egger M, et al., 2014. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int J Surg, 12(12):1495–1499. https://doi.org/10.1016/j.ijsu.2014.07.013

    PubMed  Article  PubMed Central  Google Scholar 

  40. Yang L, Shang XW, Fan JN, et al., 2016. Application of 3D printing in the surgical planning of trimalleolar fracture and doctor-patient communication. Biomed Res Int, 2016: 2482086. https://doi.org/10.1155/2016/2482086

    PubMed  PubMed Central  Google Scholar 

  41. Zhang B, Xue Q, Hu HY, et al., 2019. Integrated 3D bioprinting-based geometry-control strategy for fabricating corneal substitutes. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 20(12):945–959. https://doi.org/10.1631/jzus.B1900190

    CAS  Article  Google Scholar 

  42. Zhang WX, Ji YP, Wang XM, et al., 2017. Can the recovery of lower limb fractures be achieved by use of 3D printing mirror model? Injury, 48(11):2485–2495. https://doi.org/10.1016/j.injury.2017.09.003

    PubMed  Article  PubMed Central  Google Scholar 

  43. Zhang ZY, Dou XJ, Wei ZR, 2018. Treatment of knee flexion contracture with Ilizarov technology after burns. Chin J Rep Reconstr Surg, 32(10):1271–1274 (in Chinese). https://doi.org/10.7507/1002-1892.201805095

    Google Scholar 

  44. Zheng WH, Chen CH, Zhang CX, et al., 2018. The feasibility of 3D printing technology on the treatment of Pilon fracture and its effect on doctor-patient communication. Biomed Res Int, 2018:8054698. https://doi.org/10.1155/2018/8054698

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yan Han.

Additional information

Author contributions

Yan HAN, Youbai CHEN, and Zehao NIU drafted the manuscript and designed the study. Youbai CHEN, Zehao NIU, and Weiqian JIANG collected the data and performed the data analysis. Yan HAN, Yonghong LEI, Ran TAO, and Lingli GUO performed part of the surgeries. Wensen XIA, Baoqiang SONG, Luyu HUANG, Kexue ZHANG, and Qixu ZHANG measured MTA, ROM, AOFAS, and hindfoot scores. All authors have read and approved the final manuscript and, therefore, have full access to all the data in the study and take responsibility for the integrity and security of the data.

Compliance with ethics guidelines

Youbai CHEN, Zehao NIU, Weiqian JIANG, Ran TAO, Yonghong LEI, Lingli GUO, Kexue ZHANG, Wensen XIA, Baoqiang SONG, Luyu HUANG, Qixu ZHANG, and Yan HAN declare that they have no conflict of interest.

All procedures followed were approval by the Institutional Ethics Committees of Chinese PLA General Hospital (Approval ID: S2021-241-01). All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5). Informed consent was obtained from all patients for being included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Niu, Z., Jiang, W. et al. 3D-printed models improve surgical planning for correction of severe postburn ankle contracture with an external fixator. J. Zhejiang Univ. Sci. B 22, 866–875 (2021). https://doi.org/10.1631/jzus.B2000576

Download citation

Key words

  • Ankle contracture
  • Ilizarov
  • Postburn contracture
  • 3D printing
  • Surgical planning

关键词

  • 踝关节挛缩
  • 伊利扎洛夫技术(Ilizarov)
  • 烧伤后关节挛缩
  • 3D打印
  • 手术规划