Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 4, pp 355–362 | Cite as

Dexamethasone protects the glycocalyx on the kidney microvascular endothelium during severe acute pancreatitis

  • Wen-qiao Yu
  • Shao-yang Zhang
  • Shui-qiao Fu
  • Qing-hui Fu
  • Wei-na Lu
  • Jian Zhang
  • Zhong-yan Liang
  • Yun ZhangEmail author
  • Ting-bo LiangEmail author



This study demonstrated that dexamethasone (DEX) protects the endothelial glycocalyx from damage induced by the inflammatory stimulus tumor necrosis factor-α (TNF-α) during severe acute pancreatitis (SAP), and improves the renal microcirculation.


Ninety mice were evenly divided into 3 groups (Sham, SAP, and SAP+DEX). The SAP mice model was established by ligature of pancreatic duct and intraperitoneal injection of cerulein. Renal perfusion and function, and morphological changes of the glycocalyx were evaluated by laser Doppler velocimetry, electron microscopy, and histopathology (hematoxylin and eosin (H&E) staining), respectively. Serum levels of syndecan-1 and TNF-α were assessed by enzyme-linked immunosorbent assay (ELISA). The protective effects of dexamethasone on the glycocalyx and renal microcirculation were evaluated.


Significantly high levels of serum TNF-α were detected 3 h after the onset of SAP. These levels might induce degradation of the glycocalyx and kidney hypoperfusion, resulting in kidney microcirculation dysfunction. The application of dexamethasone reduced the degradation of the glycocalyx and improved perfusion of kidney.


Dexamethasone protects the endothelial glycocalyx from inflammatory degradation possibly initiated by TNF-α during SAP. This is might be a significant discovery that helps to prevent tissue edema and hypoperfusion in the future.

Key words

Severe acute pancreatitis (SAP) Acute kidney injury (AKI) Glycocalyx Dexamethasone Tumor necrosis factor-α (TNF-α) 


概 要

目 的

明确地塞米松可以减少重症急性胰腺炎 (SAP) 引起的肿瘤坏死因子 (TNF-α) 的释放, 减轻 TNF-α 导致的肾脏血管内皮糖萼的降解, 从而改善肾脏微循环和缓解肾损伤。


本研究通过小鼠活体研究的方法, 建立小鼠重症急性胰腺炎模型, 并用地塞米松进行干预对照, 采用透射电镜、激光多谱勒和酶联免疫的方法, 检测了各组小鼠肾脏血管内皮糖萼的完整性、肾血流灌注和 TNF-α 表达情况, 阐明了地塞米松对内皮糖萼的保护作用。

方 法

通过 “胰管结扎+腹腔内雨蛙素注射” 的方法建立SAP 模型, 分别留取各组小鼠的血液和组织标本, 采用透射电镜观察内皮糖萼的损伤情况, 用酶联免疫检测血清 TNF-α 和糖萼成份多配体聚糖的浓度, 并用激光多谱勒检测活体小鼠肾脏的灌注, 分析地塞米松对内皮糖萼的保护和改善肾脏灌注的作用。

结 论

SAP 可以引起 TNF-α 的大量释放, 并导致内皮糖萼的降解和肾脏灌注下降, 而地塞米松可以减少 TNF-α 的释放, 减轻糖萼的降解, 改善肾脏血流灌注。


重症急性胰腺炎 急性肾损伤 糖萼 地塞米松 肿瘤坏死因子 α 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barabutis N, Khangoora V, Marik PE, et al., 2017. Hydrocortisone and ascorbic acid synergistically prevent and repair lipopolysaccharide-induced pulmonary endothelial barrier dysfunction. Chest, 152(5):954–962. CrossRefGoogle Scholar
  2. Chappell D, Dörfler N, Jacob M, et al., 2010. Glycocalyx protection reduces leukocyte adhesion after ischemia/reperfusion. Shock, 34(2):133–139. CrossRefGoogle Scholar
  3. Curry FRE, Adamson RH, 2010. Vascular permeability modulation at the cell, microvessel, or whole organ level: towards closing gaps in our knowledge. Cardiovasc Res, 87(2):218–229. CrossRefGoogle Scholar
  4. de Leeuw K, Niemeijer AS, Eshuis J, et al., 2016. Effect and mechanism of hydrocortisone on organ function in patients with severe burns. J Crit Care, 36:200–206. CrossRefGoogle Scholar
  5. Ergin B, Kapucu A, Demirci-Tansel C, et al., 2015. The renal microcirculation in sepsis. Nephrol Dial Transplant, 30(2):169–177. CrossRefGoogle Scholar
  6. Gao SL, Zhang Y, Zhang SY, et al., 2015. The hydrocortisone protection of glycocalyx on the intestinal capillary endothelium during severe acute pancreatitis. Shock, 43(5): 512–517. CrossRefGoogle Scholar
  7. Glasner DR, Ratnasiri K, Puerta-Guardo H, et al., 2017. Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS Pathog, 13(11):e1006673. CrossRefGoogle Scholar
  8. Henry CB, Duling BR, 2000. TNF-α increases entry of macromolecules into luminal endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol, 279(6):H2815–H2823. CrossRefGoogle Scholar
  9. Ince C, 2014. The central role of renal microcirculatory dysfunction in the pathogenesis of acute kidney injury. Nephron Clin Pract, 127(1–4):124–128. CrossRefGoogle Scholar
  10. Kes P, Vučičević Ž, Ratković-Gusić I, et al., 1996. Acute renal failure complicating severe acute pancreatitis. Ren Fail, 18(4):621–628. CrossRefGoogle Scholar
  11. Lankisch PG, Apte M, Banks PA, 2015. Acute pancreatitis. Lancet, 386(9988):85–96. CrossRefGoogle Scholar
  12. Levick JR, Michel CC, 2010. Microvascular fluid exchange and the revised starling principle. Cardiovasc Res, 87(2): 198–210. CrossRefGoogle Scholar
  13. Nieuwdorp M, Meuwese MC, Mooij HL, et al., 2009. Tumor necrosis factor-α inhibition protects against endotoxin-induced endothelial glycocalyx perturbation. Atherosclerosis, 202(1):296–303. CrossRefGoogle Scholar
  14. Pavlidis P, Crichton S, Lemmich Smith J, et al., 2013. Improved outcome of severe acute pancreatitis in the intensive care unit. Crit Care Res Pract, 2013:897107. Google Scholar
  15. Rhodes A, Evans LE, Alhazzani W, et al., 2017. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med, 45(3):486–552. CrossRefGoogle Scholar
  16. Rosenberg RD, Shworak NW, Liu J, et al., 1997. Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? J Clin Invest, 100(S11):S67–S75.Google Scholar
  17. Schmidt J, Rattner DW, Lewandrowski K, et al., 1992. A better model of acute pancreatitis for evaluating therapy. Ann Surg, 215(1):44–56. CrossRefGoogle Scholar
  18. Singh DB, Stansby G, Bain I, et al., 2009. Intraoperative measurement of colonic oxygenation during bowel resection. In: Liss P, Hansell P, Bruley DF, et al. (Eds.), Oxygen Transport to Tissue XXX. Springer, Boston, MA, p.261–266. CrossRefGoogle Scholar
  19. van Golen RF, van Gulik TM, Heger M, 2012. Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury. Free Radic Biol Med, 52(8):1382–1402. CrossRefGoogle Scholar
  20. van Golen RF, Reiniers MJ, Vrisekoop N, et al., 2014. The mechanisms and physiological relevance of glycocalyx degradation in hepatic ischemia/reperfusion injury. Antioxid Redox Signal, 21(7):1098–1118. CrossRefGoogle Scholar
  21. Verma SK, Molitoris BA, 2015. Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin Nephrol, 35(1):96–107. CrossRefGoogle Scholar
  22. Wan L, Bagshaw SM, Langenberg C, et al., 2008. Pathophysiology of septic acute kidney injury: what do we really know? Crit Care Med, 36(S4):S198–S203. CrossRefGoogle Scholar
  23. Zhang J, Yao Y, Xiao F, et al., 2013. Administration of dexamethasone protects mice against ischemia/reperfusion induced renal injury by suppressing PI3K/AKT signaling. Int J Clin Exp Pathol, 6(11):2366–2375.Google Scholar
  24. Zheng X, Feng B, Chen G, et al., 2006. Preventing renal ischemia-reperfusion injury using small interfering RNA by targeting complement 3 genes. Am J Transplant, 6(9): 2099–2108. CrossRefGoogle Scholar
  25. Zhou JJ, Li Y, Tang Y, et al., 2015. Effect of acute kidney injury on mortality and hospital stay in patient with severe acute pancreatitis. Nephrology (Carlton), 20(7):485–491. CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Hepatobiliary and Pancreatic Surgery and Intensive Care Unit, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.Department of Surgical Intensive Care Unit, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  3. 3.Department of Reproductive Medicine, Women’s Hospital, School of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations