Abstract
Cancer remains a serious healthcare problem despite significant improvements in early detection and treatment approaches in the past few decades. Novel biomarkers for diagnosis and therapeutic strategies are urgently needed. In recent years, long noncoding RNAs (lncRNAs) have been reported to be aberrantly expressed in tumors and show crosstalk with key cancer-related signaling pathways. In this review, we summarized the current progress of research on cytoplasmic lncRNAs and their roles in regulating cancer signaling and tumor progression, further characterization of which may lead to effective approaches for cancer prevention and therapy.
概要
恶性肿瘤疾病长期作为危害人类健康的重要隐 患,目前针对重要信号调控通路的一系列靶向抑 制剂在临床后期业已出现耐药现象,迫切要求人 们在肿瘤生物学研究和靶向治疗方向不断寻找 新的可替代性靶点。长链非编码RNAs(lncRNAs) 作为最新关注的研究热点,其在肿瘤发生和转移 中的重要调节功能不断被我们及相关学者重点 报道。随着RNA 通量深度测序等相关研究技术 的推广和发展,使人们得以饱览赏析lncRNAs 作为健康和疾病重要调节因子的宏观图谱。本综 述总结了胞质lncRNAs 在调节肿瘤重要信号通 路中的研究进展及其在肿瘤发生发展中的作用, 为癌症的预前预后和靶向治疗提供帮助。
References
Altomare DA, Testa JR, 2005. Perturbations of the AKT signaling pathway in human cancer. Oncogene, 24(50): 7455–7464. https://doi.org/10.1038/sj.onc.1209085
Angers S, Moon RT, 2009. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol, 10(7):468–477. https://doi.org/10.1038/nrm2717
Atala A, 2014. Re: lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. J Urol, 191(5):1470–1471. https://doi.org/10.1016/j.juro.2014.02.011
Batista PJ, Chang HY, 2013. Long noncoding RNAs: cellular address codes in development and disease. Cell, 152(6): 1298–1307. https://doi.org/10.1016/j.cell.2013.02.012
Beyer TA, Weiss A, Khomchuk Y, et al., 2013. Switch enhancers interpret TGF-β and Hippo signaling to control cell fate in human embryonic stem cells. Cell Rep, 5(6): 1611–1624. https://doi.org/10.1016/j.celrep.2013.11.021
Cheetham SW, Gruhl F, Mattick JS, et al., 2013. Long noncoding RNAs and the genetics of cancer. Br J Cancer, 108(12):2419–2425. https://doi.org/10.1038/bjc.2013.233
Chen DH, Sun YT, Wei YK, et al., 2012. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med, 18(10):1511–1517. https://doi.org/10.1038/nm.2940
Chen Q, Zhang NL, Gray RS, et al., 2014. A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes Dev, 28(5): 432–437. https://doi.org/10.1101/gad.233676.113
Citri A, Yarden Y, 2006. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol, 7(7):505–516. https://doi.org/10.1038/nrm1962
Cordenonsi M, Zanconato F, Azzolin L, et al., 2011. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell, 147(4):759–772. https://doi.org/10.1016/j.cell.2011.09.048
Denko NC, 2008. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer, 8(9):705–713. https://doi.org/10.1038/nrc2468
Dong JX, Feldmann G, Huang JB, et al., 2007. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell, 130(6):1120–1133. https://doi.org/10.1016/j.cell.2007.07.019
Gibb EA, Brown CJ, Lam WL, 2011. The functional role of long non-coding RNA in human carcinomas. Mol Cancer, 10:38. https://doi.org/10.1186/1476-4598-10-38
Guo YZ, Sun HH, Wang XT, et al., 2018. Transcriptomic analysis reveals key lncRNAs associated with ribosomal biogenesis and epidermis differentiation in head and neck squamous cell carcinoma. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 19(9):674–688. https://doi.org/10.1631/jzus.B1700319
Gutschner T, Diederichs S, 2012. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol, 9(6):703–719. https://doi.org/10.4161/rna.20481
Hadji F, Boulanger MC, Guay SP, et al., 2016. Altered DNA methylation of long noncoding RNA H19 in calcific aortic valve disease promotes mineralization by silencing NOTCH1. Circulation, 134(23):1848–1862. https://doi.org/10.1161/CIRCULATIONAHA.116.023116
Halder G, Johnson RL, 2011. Hippo signaling: growth control and beyond. Development, 138(1):9–22. https://doi.org/10.1242/dev.045500
Harvey KF, Zhang XM, Thomas DM, 2013. The Hippo pathway and human cancer. Nat Rev Cancer, 13(4):246–257. https://doi.org/10.1038/nrc3458
Haskins JW, Nguyen DX, Stern DF, 2014. Neuregulin 1-activated ERBB4 interacts with YAP to induce Hippo pathway target genes and promote cell migration. Sci Signal, 7(355): ra116. https://doi.org/10.1126/scisignal.2005770
Hirai H, Sootome H, Nakatsuru Y, et al., 2010. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther, 9(7):1956–1967. https://doi.org/10.1158/1535-7163.MCT-09-1012
Jiang MH, Zhang SK, Yang ZH, et al., 2018. Self-recognition of an inducible host lncRNA by RIG-I feedback restricts innate immune response. Cell, 173(4):906–919.e13. https://doi.org/10.1016/j.cell.2018.03.064
Kaelin WG Jr, Ratcliffe PJ, 2008. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell, 30(4):393–402. https://doi.org/10.1016/j.molcel.2008.04.009
Keith B, Johnson RS, Simon MC, 2011. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer, 12(1):9–22. https://doi.org/10.1038/nrc3183
Kuschel A, Simon P, Tug S, 2012. Functional regulation of HIF-1α under normoxia—is there more than posttranslational regulation? J Cell Physiol, 227(2):514–524. https://doi.org/10.1002/jcp.22798
Li CL, Wang SY, Xing Z, et al., 2017. A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis. Nat Cell Biol, 19(2): 106–119. https://doi.org/10.1038/ncb3464
Lian I, Kim J, Okazawa H, et al., 2010. The role of YAP transcription coactivator in regulating stem cell selfrenewal and differentiation. Genes Dev, 24(11):1106–1118. https://doi.org/10.1101/gad.1903310
Lin AF, Piao HL, Zhuang L, et al., 2014a. FoxO transcription factors promote AKT Ser473 phosphorylation and renal tumor growth in response to pharmacologic inhibition of the PI3K-AKT pathway. Cancer Res, 74(6):1682–1693. https://doi.org/10.1158/0008-5472.CAN-13-1729
Lin AF, Yao J, Zhuang L, et al., 2014b. The FoxO-BNIP3 axis exerts a unique regulation of mTORC1 and cell survival under energy stress. Oncogene, 33(24):3183–3194. https://doi.org/10.1038/onc.2013.273
Lin AF, Li CL, Xing Z, et al., 2016. The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat Cell Biol, 18(2):213–224. https://doi.org/10.1038/ncb3295
Lin AF, Hu QS, Li CL, et al., 2017. The LINK-A lncRNA interacts with PtdIns(3,4,5)P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat Cell Biol, 19(3): 238–251. https://doi.org/10.1038/ncb3473
Ling H, Spizzo R, Atlasi Y, et al., 2013. Ccat2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res, 23(9):1446–1461. https://doi.org/10.1101/gr.152942.112
Liu BD, Sun LJ, Liu Q, et al., 2015. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell, 27(3):370–381. https://doi.org/10.1016/j.ccell.2015.02.004
Luo J, Manning BD, Cantley LC, 2003. Targeting the PI3KAkt pathway in human cancer: rationale and promise. Cancer Cell, 4(4):257–262. https://doi.org/10.1016/S1535-6108(03)00248-4
Ma YX, Zhang JM, Wen LX, et al., 2018. Membrane-lipid associated lncRNA: a new regulator in cancer signaling. Cancer Lett, 419:27–29. https://doi.org/10.1016/j.canlet.2018.01.008
Manning BD, Cantley LC, 2007. AKT/PKB signaling: navigating downstream. Cell, 129(7):1261–1274. https://doi.org/10.1016/j.cell.2007.06.009
Mayer IA, Arteaga CL, 2016. The PI3K/AKT pathway as a target for cancer treatment. Ann Rev Med, 67:11–28. https://doi.org/10.1146/annurev-med-062913-051343
Miah S, Martin A, Lukong KE, 2012. Constitutive activation of breast tumor kinase accelerates cell migration and tumor growth in vivo. Oncogenesis, 1: e11. https://doi.org/10.1038/oncsis.2012.11
Ntziachristos P, Lim JS, Sage J, et al., 2014. From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell, 25(3):318–334. https://doi.org/10.1016/j.ccr.2014.02.018
Overholtzer M, Zhang JM, Smolen GA, et al., 2006. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA, 103(33):12405–12410. https://doi.org/10.1073/pnas.0605579103
Pan DJ, 2010. The Hippo signaling pathway in development and cancer. Dev Cell, 19(4):491–505. https://doi.org/10.1016/j.devcel.2010.09.011
Pawson T, Warner N, 2007. Oncogenic re-wiring of cellular signaling pathways. Oncogene, 26(9):1268–1275. https://doi.org/10.1038/sj.onc.1210255
Ponting CP, Oliver PL, Reik W, 2009. Evolution and functions of long noncoding RNAs. Cell, 136(4):629–641. https://doi.org/10.1016/j.cell.2009.02.006
Prensner JR, Chinnaiyan AM, 2011. The emergence of lncRNAs in cancer biology. Cancer Discov, 1(5):391–407. https://doi.org/10.1158/2159-8290.CD-11-0209
Salah Z, Itzhaki E, Aqeilan RI, 2014. The ubiquitin E3 ligase ITCH enhances breast tumor progression by inhibiting the Hippo tumor suppressor pathway. Oncotarget, 5(21): 10886–10900. https://doi.org/10.18632/oncotarget.2540
Sang LJ, Ju HQ, Liu GP, et al., 2018. LncRNA Camk-A regulates Ca2+-signaling-mediated tumor microenvironment remodeling. Mol Cell, 72(1):71-83.e7.
Schwab LP, Peacock DL, Majumdar D, et al., 2012. Hypoxiainducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res, 14(1): R6. https://doi.org/10.1186/bcr3087
Song QH, Mao BB, Cheng JB, et al., 2015. YAP enhances autophagic flux to promote breast cancer cell survival in response to nutrient deprivation. PLoS ONE, 10(3): e0120790. https://doi.org/10.1371/journal.pone.0120790
Talks KL, Turley H, Gatter KC, et al., 2000. The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol, 157(2): 411–421. https://doi.org/10.1016/S0002-9440(10)64554-3
Tano K, Akimitsu N, 2012. Long non-coding RNAs in cancer progression. Front Genet, 3:219. https://doi.org/10.3389/fgene.2012.00219
Vivanco I, Sawyers CL, 2002. The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat Rev Cancer, 2(7):489–501. https://doi.org/10.1038/nrc839
Wang P, Xue YQ, Han YM, et al., 2014. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science, 344(6181):310–313. https://doi.org/10.1126/science.1251456
Wang P, Xu JF, Wang YJ, et al., 2017. An interferonindependent lncRNA promotes viral replication by modulating cellular metabolism. Science, 358(6366):1051–1055. https://doi.org/10.1126/science.aao0409
Wang WQ, Huang J, Chen JJ, 2011. Angiomotin-like proteins associate with and negatively regulate YAP1. J Biol Chem, 286(6):4364–4370. https://doi.org/10.1074/jbc.C110.205401
Wang WQ, Huang J, Wang X, et al., 2012. PTPN14 is required for the density-dependent control of YAP1. Genes Dev, 26(17):1959–1971. https://doi.org/10.1101/gad.192955.112
Wang YY, He L, Du Y, et al., 2015. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell, 16(4):413–425. https://doi.org/10.1016/j.stem.2015.03.003
Wapinski O, Chang HY, 2011. Long noncoding RNAs and human disease. Trends Cell Biol, 21(6):354–361. https://doi.org/10.1016/j.tcb.2011.04.001
Xing Z, Lin AF, Li CL, et al., 2014. lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell, 159(5):1110–1125. https://doi.org/10.1016/j.cell.2014.10.013
Yan K, Tian J, Shi W, et al., 2017. LncRNA SNHG6 is associated with poor prognosis of gastric cancer and promotes cell proliferation and EMT through epigenetically silencing p27 and sponging miR-101-3p. Cell Physiol Biochem, 42(3):999-1012. https://doi.org/10.1159/000478682
Yang GD, Lu XZ, Yuan LJ, 2014. LncRNA: a link between RNA and cancer. Biochim Biophys Acta, 1839(11):1097–1109. https://doi.org/10.1016/j.bbagrm.2014.08.012
Yu FX, Zhao B, Guan KL, 2015. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell, 163(4):811–828. https://doi.org/10.1016/j.cell.2015.10.044
Zhao B, Li L, Lei QY, et al., 2010. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev, 24(9):862–874. https://doi.org/10.1101/gad.1909210
Zheng X, Han H, Liu GP, et al., 2017. LncRNA wires up Hippo and hedgehog signaling to reprogramme glucose metabolism. EMBO J, 36(22):3325–3335. https://doi.org/10.15252/embj.201797609
Zhong H, de Marzo AM, Laughner E, et al., 1999. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res, 59(22): 5830–5835.
Zhou X, Wang SY, Wang Z, et al., 2015. Estrogen regulates Hippo signaling via GPER in breast cancer. J Clin Invest, 125(5):2123–2135. https://doi.org/10.1172/JCI79573
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (Nos 81672791 and 81872300) and the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars of China (No. LR18C060002)
Introducing editorial board member:
Dr. Ai-fu LIN, Professor of College of Life Sciences, Zhejiang University, is a Scholar of Thousand Youth Talents- China, Scholar of Thousand Talents-Zhejiang, and Scholar of Hundred Talents-Zhejiang University. His research interests include: (1) dissecting and targeting the lncRNA-based cancer therapies for cancer treatment; (2) defining the novel regulators involved in cancer progression and stem cell development.
Dr. Ai-fu LIN dedicates his effort to perform research on lncRNAs, a new and expanding area of research that adds complexity as well as greater depth in understanding the processes of breast cancer development, metastasis, and the reprogramming of cancer metabolism (Cell, 2014; Nature Cell Biology, 2016; Nature Cell Biology, 2017; The EMBO Journal, 2017; Cancer Letters, 2018). Dr. Ai-fu LIN also focuses on exploring the mTOR-associated signaling pathways in cancer metabolism and stem cell maintenance (Oncogene, 2013; Cancer Research, 2014; Nature Cell Biology, 2016). These works represent exciting biomedical research approaches that acknowledge the importance of the study of lncRNA in cancerrelated signaling, and also provide valuable clues to future therapies that could impact the treatment of many related diseases.
Rights and permissions
About this article
Cite this article
Fu, Pf., Zheng, X., Fan, X. et al. Role of cytoplasmic lncRNAs in regulating cancer signaling pathways. J. Zhejiang Univ. Sci. B 20, 1–8 (2019). https://doi.org/10.1631/jzus.B1800254
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.B1800254