Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 4, pp 322–331 | Cite as

Regulation of flowering time via miR172-mediated APETALA2-like expression in ornamental gloxinia (Sinningia speciosa)

  • Xiao-yan Li
  • Fu Guo
  • Sheng-yun Ma
  • Mu-yuan Zhu
  • Wei-huai PanEmail author
  • Hong-wu BianEmail author
Article
  • 14 Downloads

Abstract

We investigated the microRNA172 (miR172)-mediated regulatory network for the perception of changes in external and endogenous signals to identify a universally applicable floral regulation system in ornamental plants, manipulation of which could be economically beneficial. Transgenic gloxinia plants, in which miR172 was either overexpressed or suppressed, were generated using Agrobacterium-mediated transformation. They were used to study the effect of altering the expression of this miRNA on time of flowering and to identify its mRNA target. Early or late flowering was observed in transgenic plants in which miR172 was overexpressed or suppressed, respectively. A full-length complementary DNA (cDNA) of gloxinia (Sinningia speciosa) APETALA2-like (SsAP2-like) was identified as a target of miR172. The altered expression levels of miR172 caused up- or down-regulation of SsAP2-like during flower development, which affected the time of flowering. Quantitative real-time reverse transcription PCR analysis of different gloxinia tissues revealed that the accumulation of SsAP2-like was negatively correlated with the expression of miR172a, whereas the expression pattern of miR172a was negatively correlated with that of miR156a. Our results suggest that transgenic manipulation of miR172 could be used as a universal strategy for regulating time of flowering in ornamental plants.

Key words

Flowering time Transgenic gloxinia MicroRNA172 APETALA2-like (AP2-like) 

MiR172 介导的 AP2-like 转录因子表达对大岩桐 花期调控的研究

概 要

目 的

本文通过研究 microRNA172a (miR172a) 对成花 途径中关键靶基因 APETALA2 类 (AP2-like) 的 调控作用及其机理分析, 探索通过操纵 miRNA 表达改变观赏植物花期的基因工程分子育种新 策略。

创新点

本研究基于植物 miR172 序列和功能的高度保守 性, 通过转基因的方法操纵大岩桐 miR172 的表 达, 进而影响AP2-like 基因的表达, 并起到调控 花期的作用。

方 法

本研究借用拟南芥 miR172a 的已知序列构建组成 型过表达载体 35S:miR172a 和抑制 miR172 表达 的 35S:MIM172 载体。利用农杆菌介导法成功获 得了35S:miR172a 过表达株系以及抑制 miR172 作用的 35S:MIM172 株系, 并利用 cDNA 末端快 速扩增技术 (rapid amplification of cDNA ends, RACE) 克隆得到了大岩桐 AP2-like cDNA 全序 列, 并通过实时荧光定量聚合酶链式反应技术 (qPCR) 检测转基因株系中 AP2-like 的表达变化。

结 论

短日照条件下, 35S:miR172a 过表达株系花期比 野生型提前(47.00±2.16)天; 35S:MIM172 株系 花期延迟 (7.00±4.28)天。在35S:miR172a 过表 达株系中 miR172 的表达水平明显上升, 其靶基 因 SsAP2-like 的表达量明显下降; 35S:MIM172 株系中 miR172 的积累水平受到抑制, 而 SsAP2-like 的表达量明显上升, 表明 miR172 介导 调控 SsAP2 的表达对大岩桐成花转变具有促进作 用。通过改变miR172 的表达调控关键靶基因进 而改变花期的方法可以作为调节观赏植物开花 时间的有效策略。

关键词

花期 MicroRNA172 APETALA2-like (AP2-like

CLC number

Q943.2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. Achard P, Herr A, Baulcombe DC, et al., 2004. Modulation of floral development by a gibberellin-regulated microRNA. Development, 131(14):3357–3365. https://doi.org/10.1242/dev.01206 CrossRefGoogle Scholar
  2. Aukerman MJ, Sakai H, 2003. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell, 15(11):2730–2741. https://doi.org/10.1105/tpc.016238 CrossRefGoogle Scholar
  3. Chen XM, 2005. MicroRNA biogenesis and function in plants. FEBS Lett, 579(26):5923–5931. https://doi.org/10.1016/j.febslet.2005.07.071 CrossRefGoogle Scholar
  4. Ferreira ESG, Silva EM, da Silva Azevedo M, 2014. MicroRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Plant J, 78(4):604–618 https://doi.org/10.1111/tpj.12493 CrossRefGoogle Scholar
  5. Franco-Zorrilla JM, Valli A, Todesco M, et al., 2007. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet, 39(8):1033–1037. https://doi.org/10.1038/ng2079 CrossRefGoogle Scholar
  6. Hong YG, Jackson S, 2015. Floral induction and flower formation—the role and potential applications of miRNAs. Plant Biotechnol J, 13(3):282–292. https://doi.org/10.1111/pbi.12340 CrossRefGoogle Scholar
  7. Huijser P, Schmid M, 2011. The control of developmental phase transitions in plants. Development, 138(19):4117–4129. https://doi.org/10.1242/dev.063511 CrossRefGoogle Scholar
  8. Kramer JA, 2001. Omiga™: a PC-based sequence analysis tool. Mol Biotechnol, 19(1):97–106. https://doi.org/10.1385/MB:19:1:097 CrossRefGoogle Scholar
  9. Lee YS, Lee DY, Cho LH, et al., 2014. Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice, 7(1):31. https://doi.org/10.1186/s12284-014-0031-4 CrossRefGoogle Scholar
  10. Li XY, Bian HW, Song DF, et al., 2013. Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression. Ann Bot, 111(5): 791–799. https://doi.org/10.1093/aob/mct034 CrossRefGoogle Scholar
  11. Mathieu J, Yant LJ, Mürdter F, et al., 2009. Repression of flowering by the miR172 target SMZ. PLoS Biol, 7(7): e1000148. https://doi.org/10.1371/journal.pbio.1000148 CrossRefGoogle Scholar
  12. Mlotshwa S, Yang ZY, Kim YJ, et al., 2006. Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana. Plant Mol Biol, 61(4–5):781–793. https://doi.org/10.1007/s11103-006-0049-0 CrossRefGoogle Scholar
  13. Morea EGO, da Silva EM, e Silva GFF, et al., 2016. Functional and evolutionary analyses of the miR156 and miR529 families in land plants. BMC Plant Biol, 16:40. https://doi.org/10.1186/s12870-016-0716-5 CrossRefGoogle Scholar
  14. Teotia S, Tang GL, 2015. To bloom or not to bloom: role of microRNAs in plant flowering. Mol Plant, 8(3):359–377. https://doi.org/10.1016/j.molp.2014.12.018 CrossRefGoogle Scholar
  15. Terzi LC, Simpson GG, 2008. Regulation of flowering time by RNA processing. In: Reddy ASN, Golovkin M (Eds.), Nuclear Pre-mRNA Processing in Plants. Springer, Berlin, Heidelberg, p.201–218. https://doi.org/10.1007/978-3-540-76776-3_11 CrossRefGoogle Scholar
  16. Todesco M, Rubio-Somoza I, Paz-Ares J, et al., 2010. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet, 6(7):e1001031. https://doi.org/10.1371/journal.pgen.1001031 CrossRefGoogle Scholar
  17. Varkonyi-Gasic E, Hellens RP, 2010. qRT-PCR of small RNAs. In: Kovalchuk I, Zemp FJ (Eds.), Plant Epigenetics: Methods and Protocols. Humana Press, Totowa, p.109–122. https://doi.org/10.1007/978-1-60761-646-7_10 CrossRefGoogle Scholar
  18. Wang YN, Wang LX, Zou YM, et al., 2014. Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation. Plant Cell, 26(12):4782–4801. https://doi.org/10.1105/tpc.114.131607 CrossRefGoogle Scholar
  19. Wu G, Park MY, Conway SR, et al., 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 138(4):750–759. https://doi.org/10.1016/j.cell.2009.06.031 CrossRefGoogle Scholar
  20. Xu ML, Hu TQ, Zhao JF, et al., 2016. Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genet, 12(8):e1006263. https://doi.org/10.1371/journal.pgen.1006263 CrossRefGoogle Scholar
  21. Yamaguchi A, Abe M, 2012. Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower. J Plant Res, 125(6):693–704. https://doi.org/10.1007/s10265-012-0513-7 CrossRefGoogle Scholar
  22. Yang L, Conway SR, Poethig RS, 2011. Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156. Development, 138(2):245–249. https://doi.org/10.1242/dev.058578 CrossRefGoogle Scholar
  23. Yant L, Mathieu J, Dinh TT, et al., 2010. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell, 22(7):2156–2170. https://doi.org/10.1105/tpc.110.075606 CrossRefGoogle Scholar
  24. Yao JL, Tomes S, Xu J, et al., 2016. How microRNA172 affects fruit growth in different species is dependent on fruit type. Plant Signal Behav, 11(4):e1156833. https://doi.org/10.1080/15592324.2016.1156833 CrossRefGoogle Scholar
  25. Zhang MZ, Ye D, Wang LL, et al., 2008. Overexpression of the cucumber LEAFY homolog CFL and hormone treatments alter flower development in gloxinia (Sinningia speciosa). Plant Mol Biol, 67(4):419–427. https://doi.org/10.1007/s11103-008-9330-8 CrossRefGoogle Scholar
  26. Zhu QH, Helliwell CA, 2011. Regulation of flowering time and floral patterning by miR172. J Exp Bot, 62(2):487–495. https://doi.org/10.1093/jxb/erq295 CrossRefGoogle Scholar
  27. Zhu QH, Upadhyaya NM, Gubler F, et al., 2009. Overexpression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol, 9:149. https://doi.org/10.1186/1471-2229-9-149 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life SciencesZhejiang UniversityHangzhouChina
  2. 2.College of Life SciencesShaoxing UniversityShaoxingChina
  3. 3.College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina

Personalised recommendations