Abstract
The present study aimed to evaluate the anti-diabetic property of peanut shell polyphenol extracts (PSPEs). Diabetic rats were oral-administrated with PSPE at doses of 50, 100, and 200 mg/kg body weight (BW) per day for 28 consecutive days, with metformin (Met) as a positive control. The results showed that, similar to the Met treatment, administration of PSPE caused significant decreases in food intake, water intake, fasting blood glucose, total cholesterol, triglyceride, low-density lipoprotein cholesterol, and methane dicarboxylic aldehyde in serum, and significant increases in BW, insulin level, high-density lipoprotein cholesterol, superoxide dismutase, glutathione, and liver glycogen. Further, glucose tolerance was markedly improved in the PSPE-treated diabetic groups. Histopathological results showed that PSPE improved cellular structural and pathological changes in liver, kidney, and pancreatic islets. Collectively, the results indicated that the hypoglycemic effects of PSPE on high-fat diet/streptozotocin (HFD/STZ)- induced diabetes are comparable to Met, though their exact mechanism actions are still under investigation. Therefore, the current study suggests that PSPE could be a potential health-care food supplement in the management of diabetes.
中文概要
目的
评估花生壳多酚提取物的抗糖尿病活性。
创新点
明确了花生壳多酚的抗糖尿病活性。
方法
通过高脂饮食/链脲霉素(HFD/STZ)诱导产生糖尿病小鼠。将糖尿病小鼠随机分为四组:二甲双胍组、花生壳多酚高、中、低剂量组(分别为200、 100 和50 mg/kg);同时设置正常对照组及糖尿 病对照组。二甲双胍及花生壳多酚每日口服一 次,剂量为每天10 ml/kg 体重,持续4周;考察不同剂量的花生壳多酚对糖尿病小鼠的体重、饮食、饮水,空腹血糖、血清总胆固醇、血脂、高密度脂蛋白胆固醇、低密度脂蛋白胆固醇,及血 液中超氧化物歧化酶、谷胱甘肽、丙二醛、肝糖 原水平的影响;并对小鼠的肝脏、肾脏和胰岛组 织进行组织学分析。
结论
花生壳多酚具有一定的降血糖作用,可作为潜在 的食物补充剂应用于糖尿病患者的饮食管理中。
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Al-Attar AM, Zari TA, 2010. Influences of crude extract of tea leaves, Camellia sinensis, on streptozotocin diabetic male albino mice. Saudi J Biol Sci, 17(4):295–301. https://doi.org/10.1016/j.sjbs.2010.05.007
Bell DS, 2001. Importance of postprandial glucose control. South Med J, 94(8):804–809. https://doi.org/10.1097/00007611-200194080-00011
Bertoni AG, Hundley WG, Massing MW, et al., 2004. Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care, 27(3):699–703. https://doi.org/10.2337/diacare.27.3.699
Chandirasegaran G, Elanchezhiyan C, Ghosh K, et al., 2017. Berberine chloride ameliorates oxidative stress, inflammation and apoptosis in the pancreas of streptozotocin induced diabetic rats. Biomed Pharmacother, 95:175–185. https://doi.org/10.1016/j.biopha.2017.08.040
Chen FF, Xiong H, Wang JX, et al., 2013. Antidiabetic effect of total flavonoids from Sanguis draxonis in type 2 diabetic rats. J Ethnopharmacol, 149(3):729–736. https://doi.org/10.1016/j.jep.2013.07.035
Chen L, Tian GW, Tang WD, et al., 2016. Protective effect of luteolin on streptozotocin-induced diabetic renal damage in mice via the regulation of RIP140/NF-?B pathway and insulin signalling pathway. J Funct Foods, 22:93–100. https://doi.org/10.1016/j.jff.2016.01.023
Chen P, Zhang QX, Dang H, et al., 2014. Antidiabetic effect of Lactobacillus casei CCFM0412 on mice with type 2 diabetes induced by a high-fat diet and streptozotocin. Nutrition, 30(9):1061–1068. https://doi.org/10.1016/j.nut.2014.03.022
Duh PD, Yen GC, 1995. Changes in antioxidant activity and components of methanolic extracts of peanut hulls irradiated with ultraviolet light. Food Chem, 54(2):127–131. https://doi.org/10.1016/0308-8146(94)00148-X
Esmaeili MA, Yazdanparast R, 2004. Hypoglycaemic effect of Teucrium polium: studies with rat pancreatic islets. J Ethnopharmacol, 95(1):27–30. https://doi.org/10.1016/j.jep.2004.06.023
Fischer AH, Jacobson KA, Rose J, et al., 2008. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc, 2008:pdb.prot4986. https://doi.org/10.1101/pdb.prot4986
Gao F, Ye HQ, Yu YL, et al., 2011. Lack of toxicological effect through mutagenicity test of polyphenol extracts from peanut shells. Food Chem, 129(3):920–924. https://doi.org/10.1016/j.foodchem.2011.05.046
Gavin JR, Alberti KGMM, Davidson MB, et al., 2003. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 26(S1):S5–S20. https://doi.org/10.2337/diacare.26.2007.S5
Ginsberg HN, 2000. Insulin resistance and cardiovascular disease. J Clin Invest, 106(4):453–458. https://doi.org/10.1172/JCI10762
Gray AM, Flatt PR, 1997. Nature’s own pharmacy: the diabetes perspective. Proc Nutr Soc, 56(1B):507–517. https://doi.org/10.1079/PNS19970051
Han RP, Han P, Cai ZH, et al., 2008. Kinetics and isotherms of Neutral Red adsorption on peanut husk. J Environ Sci, 20(9):1035–1041. https://doi.org/10.1016/S1001-0742(08)62146-4
Kasala ER, Bodduluru LN, Barua CC, et al., 2016. Antioxidant and antitumor efficacy of Luteolin, a dietary flavone on benzo(a)pyrene-induced experimental lung carcinogenesis. Biomed Pharmacother, 82:568–577. https://doi.org/10.1016/j.biopha.2016.05.042
Kaur N, Kishore L, Singh R, 2016. Antidiabetic effect of new chromane isolated from Dillenia indica L. leaves in streptozotocin induced diabetic rats. J Funct Foods, 22: 547–555. https://doi.org/10.1016/j.jff.2016.02.016
Kim YM, Wang MH, Rhee HI, 2004. A novel a-glucosidase inhibitor from pine bark. Carbohyd Res, 339(3):715–717. https://doi.org/10.1016/j.carres.2003.11.005
King GL, 2008. The role of inflammatory cytokines in diabetes and its complications. J Periodontol, 79(8S):1527–1534. https://doi.org/10.1902/jop.2008.080246
Korejo NA, Wei QW, Shan AH, et al., 2016. Effects of concomitant diabetes mellitus and hyperthyroidism on testicular and epididymal histoarchitecture and steroidogenesis in male animals. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 17(11):850–863. https://doi.org/10.1631/jzus.B1600136
Krentz AJ, Clough G, Byrne CD, 2007. Interactions between microvascular and macrovascular disease in diabetes: pathophysiology and therapeutic implications. Diabetes Obes Metab, 9(6):781–791. https://doi.org/10.1111/j.1463-1326.2007.00670.x
Li WL, Zheng HC, Bukuru J, et al., 2004. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol, 92(1):1–21. https://doi.org/10.1016/j.jep.2003.12.031
Lü H, Chen J, Li WL, et al., 2009a. Hypoglycemic and hypolipidemic effects of the total triterpene acid fraction from Folium Eriobotryae. J Ethnopharmacol, 122(3):486–491. https://doi.org/10.1016/j.jep.2009.01.030
Lü H, Chen J, Li WL, et al., 2009b. Hypoglycemic effect of the total flavonoid fraction from Folium Eriobotryae. Phytomedicine, 16(10):967–971. https://doi.org/10.1016/j.phymed.2009.03.024
Ong KW, Hsu A, Song LX, et al., 2011. Polyphenols-rich Vernonia amygdalina shows anti-diabetic effects in streptozotocin-induced diabetic rats. J Ethnopharmacol, 133(2):598–607. https://doi.org/10.1016/j.jep.2010.10.046
Patel DK, Prasad SK, Kumar R, et al., 2012. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pacific J Trop Biomed, 2(4):320–330. https://doi.org/10.1016/S2221-1691(12)60032-X
Phillips DIW, Clark PM, Hales CN, et al., 1994. Understanding oral glucose tolerance: comparison of glucose or insulin measurements during the oral glucose tolerance test with specific measurements of insulin resistance and insulin secretion. Diabetic Med, 11(3):286–292. https://doi.org/10.1111/j.1464-5491.1994.tb00273.x
Qiu JY, Chen LL, Zhu QJ, et al., 2012. Screening natural antioxidants in peanut shell using DPPH-HPLC-DADTOF/MS methods. Food Chem, 135(4):2366–2371. https://doi.org/10.1016/j.foodchem.2012.07.042
Roden M, Bernroider E, 2003. Hepatic glucose metabolism in humans—its role in health and disease. Best Pract Res Clin Endocrinol Metab, 17(3):365–383. https://doi.org/10.1016/S1521-690X(03)00031-9
Russo D, Malafronte N, Frescura D, et al., 2015. Antioxidant activities and quali-quantitative analysis of different Smallanthus sonchifolius [(Poepp. and Endl.) H. Robinson] landrace extracts. Nat Prod Res, 29(17):1673–1677. https://doi.org/10.1080/14786419.2014.990906
Saini AK, Kumar HSA, Sharma SS, 2007. Preventive and curative effect of edaravone on nerve functions and oxidative stress in experimental diabetic neuropathy. Eur J Pharmacol, 568(1-3):164–172. https://doi.org/10.1016/j.ejphar.2007.04.016
Sepici-Dincel A, Açikgöz S, Çevik C, et al., 2007. Effects of in vivo antioxidant enzyme activities of myrtle oil in normoglycaemic and alloxan diabetic rabbits. J Ethnopharmacol, 110(3):498–503. https://doi.org/10.1016/j.jep.2006.10.015
Sharma SB, Nasir A, Prabhu KM, et al., 2006. Antihyperglycemic effect of the fruit-pulp of Eugenia jambolana in experimental diabetes mellitus. J Ethnopharmacol, 104(3): 367–373. https://doi.org/10.1016/j.jep.2005.10.033
Shobana S, Sreerama YN, Malleshi NG, 2009. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: mode of inhibition of a-glucosidase and pancreatic amylase. Food Chem, 115(4):1268–1273. https://doi.org/10.1016/j.foodchem.2009.01.042
Shulman GI, 2000. Cellular mechanisms of insulin resistance. J Clin Invest, 106(2):171–176. https://doi.org/10.1172/JCI10583
Srivastava Y, Venkatakrishna-Bhatt H, Verma Y, et al., 1993. Antidiabetic and adaptogenic properties of Momordica charantia extract: an experimental and clinical evaluation. Phytother Res, 7(4):285–289. https://doi.org/10.1002/ptr.2650070405
Stumvoll M, Goldstein BJ, van Haeften TW, 1900. Type 2 diabetes: principles of pathogenesis and therapy. Lancet, 365(9467):1333–1346. https://doi.org/10.1016/S0140-6736(05)61032-X
Stumvoll M, Mitrakou A, Pimenta W, et al., 2000. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care, 23(3):295–301. https://doi.org/10.2337/diacare.23.3.295
Torres-Piedra M, Ortiz-Andrade R, Villalobos-Molina R, et al., 2010. A comparative study of flavonoid analogues on streptozotocin-nicotinamide induced diabetic rats: quercetin as a potential antidiabetic agent acting via 11β-hydroxysteroid dehydrogenase type 1 inhibition. Eur J Med Chem, 45(6):2606–2612. https://doi.org/10.1016/j.ejmech.2010.02.049
Upadhyay G, Gupta SO, Singh MP, 2010. Pyrogallol-mediated toxicity and natural antioxidants: triumphs and pitfalls of preclinical findings and their translational limitations. Chem-Biol Interact, 183(3):333–340. https://doi.org/10.1016/j.cbi.2009.11.028
Wang LL, Duan GL, Lu Y, et al., 2013. The effect of simvastatin on glucose homeostasis in streptozotocin induced type 2 diabetic rats. J Diabetes Res, 2013:274986. https://doi.org/10.1155/2013/274986
Wang Y, Xin X, Jin ZD, et al., 2011. Anti-diabetic effects of pentamethylquercetin in neonatally streptozotocin-induced diabetic rats. Eur J Pharmacol, 668(1-2):347–353. https://doi.org/10.1016/j.ejphar.2011.06.022
Yadav N, Morris G, Harding SE, et al., 2009. Various non-injectable delivery systems for the treatment of diabetes mellitus. Endocr Metab Immune Disord Drug Targets, 9(1):1–13. https://doi.org/10.2174/187153009787582405
Yeh PT, Huang HW, Yang CM, et al., 2016. Astaxanthin inhibits expression of retinal oxidative stress and inflammatory mediators in streptozotocin-induced diabetic rats. PLoS ONE, 11(1):e0146438. https://doi.org/10.1371/journal.pone.0146438
Yen GC, Duh PD, 1994. Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J Agric Food Chem, 42(3):629–632. https://doi.org/10.1021/jf00039a005
Yu YL, Gao F, Deng XM, et al., 2013. Inhibitory effect of polyphenol extracts from peanut shells on the activity of pancreatic a-amylase activity in vitro. J Food Agric Environ, 11(2):38–42.
Zhang GW, Hu MM, He L, et al., 2013. Optimization of microwave-assisted enzymatic extraction of polyphenols from waste peanut shells and evaluation of its antioxidant and antibacterial activities in vitro. Food Bioprod Process, 91(2):158–168. https://doi.org/10.1016/j.fbp.2012.09.003
Zhang SW, Liu L, Su YL, et al., 2011. Antioxidative activity of lactic acid bacteria in yogurt. Afr J Microbiol Res, 5(29): 5194–5201. https://doi.org/10.5897/AJMR11.997
Zhang Y, Ren CJ, Lu GB, et al., 2014. Purification, characterization and anti-diabetic activity of a polysaccharide from mulberry leaf. Regul Toxicol Pharm, 70(3):687–695. https://doi.org/10.1016/j.yrtph.2014.10.006
Zizkova P, Stefek M, Rackova L, et al., 2017. Novel quercetin derivatives: from redox properties to promising treatment of oxidative stress related diseases. Chem-Biol Interact, 265:36–46. https://doi.org/10.1016/j.cbi.2017.01.019
Author information
Authors and Affiliations
Corresponding authors
Additional information
Project supported by the China Scholarship Council (No. 201306175110) and the Major Scientific and Technological Research Project of Jilin Province (No. 20140204048NY), China
Rights and permissions
About this article
Cite this article
Sun, Xm., Ye, Hq., Liu, Jb. et al. Assessment of anti-diabetic activity of peanut shell polyphenol extracts. J. Zhejiang Univ. Sci. B 19, 764–775 (2018). https://doi.org/10.1631/jzus.B1700401
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.B1700401