Skip to main content

Depolymerized konjac glucomannan: preparation and application in health care

解聚型魔芋葡甘露聚糖的制备以及生理活性研究的进展

Abstract

Konjac glucomannan (KGM) is a water-soluble polysaccharide obtained from the roots and tubers of konjac plants. Recently, a degraded product of KGM, depolymerized KGM (DKGM), has attracted attention because of its low viscosity, improved hydrophily, and favorable physiological functions. In this review, we describe the preparation of DKGM and its prebiotic effects. Other health benefits of DKGM, covering antioxidant and immune activity, are also discussed, as well as its safety. DKGM could be a candidate for use as a tool for the treatment of various diseases, including intestinal flora imbalance, and oxidative- and immune-related disorders.

概要

魔芋葡甘露聚糖是从魔芋块茎中提取的一种高分 子水溶性多糖。近些年研究表明,其解聚产物, 除了具有高溶解性和低粘度等良好的理化性质 外,还具有调节微生物菌群结构、抗氧化、免疫 调节等多种生理活性。本文重点综述了解聚型葡 甘露聚糖的制备方法以及菌群调节功能。除此之 外,对其抗氧化、免疫调节功能以及安全性评价 也进行了全面的总结,为解聚型葡甘露聚糖的研 究与应用提供一定的依据与思路。

This is a preview of subscription content, access via your institution.

References

  • Albrecht S, van Muiswinkel GC, Schols HA, et al., 2009. Introducing capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) for the characterization of konjac glucomannan oligosaccharides and their in vitro fermentation behavior. J Agric Food Chem, 57(9):3867–3876. https://doi.org/10.1021/jf8038956

    Article  PubMed  CAS  Google Scholar 

  • Al-Ghazzewi FH, Tester RF, 2010. Effect of konjac glucomannan hydrolysates and probiotics on the growth of the skin bacterium Propionibacterium acnes in vitro. Int J Cosmet Sci, 32(2):139–142. https://doi.org/10.1111/j.1468-2494.2009.00555.x

    Article  PubMed  CAS  Google Scholar 

  • Al-Ghazzewi FH, Tester RF, 2012. Efficacy of cellulase and mannanase hydrolysates of konjac glucomannan to promote the growth of lactic acid bacteria. J Sci Food Agric, 92(11):2394–2396. https://doi.org/10.1002/jsfa.5678

    Article  PubMed  CAS  Google Scholar 

  • Al-Ghazzewi FH, Khanna S, Tester RF, et al., 2007. The potential use of hydrolysed konjac glucomannan as a prebiotic. J Sci Food Agric, 87(9):1758–1766. https://doi.org/10.1002/jsfa.2919

    Article  CAS  Google Scholar 

  • Al-Ghazzewi FH, Tester RF, Alvani K, 2012. The synbiotic effects of konjac glucomannan hydrolysates (GMH) and lactobacilli on the growth of Staphylococcus aureus and Salmonella typhimurium. Nutr Food Sci, 42(2):97–101. https://doi.org/10.1108/00346651211212051

    Article  Google Scholar 

  • Bateni E, Tester R, Al-Ghazzewi F, et al., 2013. The use of konjac glucomannan hydrolysates (GMH) to improve the health of the skin and reduce acne vulgaris. Am J Dermatol Venereol, 2(2):10–14. https://doi.org/10.5923/j.ajdv.20130202.02

    Google Scholar 

  • Behera SS, Ray RC, 2016. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. Int J Biol Macromol, 92:942–956. https://doi.org/10.1016/j.ijbiomac.2016.07.098

    Article  PubMed  CAS  Google Scholar 

  • Bhotmange DU, Wallenius JH, Singhal RS, et al., 2017. Enzymatic extraction and characterization of polysaccharide from tuber aestivum. Bioact Carbohydr Diet Fibre, 10: 1–9. https://doi.org/10.1016/j.bcdf.2017.02.001

    Article  CAS  Google Scholar 

  • Cescutti P, Campa C, Delben F, et al., 2002. Structure of the oligomers obtained by enzymatic hydrolysis of the glucomannan produced by the plant Amorphophallus konjac. Carbohydr Res, 337(24):2505–2511. https://doi.org/10.1016/S0008-6215(02)00332-4

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Huang YC, Yang TY, et al., 2016. Degradation of konjac glucomannan by Thermobifida fusca thermostable β-mannanase from yeast transformant. Int J Biol Macromol, 82:1–6. https://doi.org/10.1016/j.ijbiomac.2015.10.008

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Qian H, 2008. Optimization of ultrasonic degradation of konjac glucomannan by response surface analysis. Sci Technol Food Ind, 29(1):146–152 (in Chinese). https://doi.org/10.13386/j.issn1002-0306.2008.01.062

    CAS  Google Scholar 

  • Chen HL, Fan YH, Chen ME, et al., 2005. Unhydrolyzed and hydrolyzed konjac glucomannans modulated cecal and fecal microflora in Balb/c mice. Nutrition, 21(10):1059–1064. https://doi.org/10.1016/j.nut.2005.02.008

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Liu D, Shi B, et al., 2013. Optimization of hydrolysis conditions for the production of glucomanno-oligosaccharides from konjac using β-mannanase by response surface methodology. Carbohydr Polym, 93(1):81–88. https://doi.org/10.1016/j.carbpol.2012.05.037

    Article  PubMed  CAS  Google Scholar 

  • Cheng LF, Feng XY, Duan SW, et al., 2016. Optimization of the process conditions on preparation of glucomannooligosaccharides using a novel β-mannanase. Food Sci, 37(6):34–38 (in Chinese). https://doi.org/10.7506/spkx1002-6630-201606006

    CAS  Google Scholar 

  • Connolly ML, Lovegrove JA, Tuohy KM, 2010. Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota. J Funct Foods, 2(3):219–224. https://doi.org/10.1016/j.jff.2010.05.001

    Article  CAS  Google Scholar 

  • Dang Y, Liu SY, Zhang ZJ, et al., 2015. Research of preparation and production optimization of mannoligosaccharides. Sci Technol Food Ind, 36(8):250–256 (in Chinese). https://doi.org/10.13386/j.issn1002-0306.2015.08.044

    CAS  Google Scholar 

  • Deng LL, Zhong G, Liu BY, et al., 2013. Properties of konjac oligosaccharides prepared by semi-dry enzymatic hydrolysis. Food Sci, 34(15):115–119 (in Chinese). https://doi.org/10.7506/spkx1002-6630-201315024

    Google Scholar 

  • Dhawan S, Kaur J, 2007. Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol, 27(4): 197–216. https://doi.org/10.1080/07388550701775919

    Article  PubMed  CAS  Google Scholar 

  • Elamir AA, Tester RF, Al-Ghazzewi FH, et al., 2008. Effects of konjac glucomannan hydrolysates on the gut microflora of mice. Nutr Food Sci, 38(5):422–429. https://doi.org/10.1108/00346650810906930

    Article  Google Scholar 

  • Feng L, An XJ, Qi Y, et al., 2015. Protective effect of konjac oligo-glucomannan on trinitrobenzene sulfonic acid-induced ulcerative colitis in mice. Sci Technol Food Ind, 36(1): 349–352 (in Chinese). https://doi.org/10.13386/j.issn1002-0306.2015.01.065

    Google Scholar 

  • Guo Y, Wang HS, Zhou K, 2017. Effect of konjacmannan oligosaccharides on the co-culture of Lactobacillus plantarum and Enterococcus faecalis. Chin Wild Plant Resour, 36(2):13–16 (in Chinese). https://doi.org/10.3969/j.issn.1006-9690.2017.02.004

    Google Scholar 

  • He D, Guo X, Yang SL, et al., 2013. Preparation of konjac mannose-oligosaccharides by β-mannanase and composition analysis. China Brew, 32(2):85–88 (in Chinese).

    Google Scholar 

  • Huang YC, Xie QR, Ma YF, et al., 2006. Study on the degradation of konjac glucomannan with ultrasonic. Food Sci Technol, (9):103–105 (in Chinese). https://doi.org/10.13684/j.cnki.spkj.2006.09.040

    Google Scholar 

  • Jian W, Sun Y, Huang H, et al., 2013. Study on preparation and separation of Konjac oligosaccharides. Carbohydr Polym, 92(2):1218–1224. https://doi.org/10.1016/j.carbpol.2012.09.065

    Article  PubMed  CAS  Google Scholar 

  • Jian W, Tu L, Wu L, et al., 2017. Physicochemical properties and cellular protection against oxidation of degraded Konjac glucomannan prepared by γ-irradiation. Food Chem, 231:42–50. https://doi.org/10.1016/j.foodchem.2017.03.121

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Li H, Wang M, et al., 2016. Subchronic toxicity and genotoxicity assessment of low molecular mass konjac mannan oligosaccharide in vitro and in vivo. Prog Biochem Biophys, 43(3):271–280 (in Chinese). https://doi.org/10.1647/j.pibb.2015.0313

    Google Scholar 

  • Jiao F, Wang X, Song X, et al., 2017. Processing optimization and anti-oxidative activity of enzymatic extractable polysaccharides from Pleurotus djamor. Int J Biol Macromol, 98:469–478. https://doi.org/10.1016/j.ijbiomac.2017.01.126

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Xu W, Li Z, et al., 2014a. Degraded konjac glucomannan by γ-ray irradiation assisted with ethanol: preparation and characterization. Food Hydrocoll, 36:85–92. https://doi.org/10.1016/j.foodhyd.2013.09.005

    Article  CAS  Google Scholar 

  • Jin W, Mei T, Wang Y, et al., 2014b. Synergistic degradation of konjac glucomannan by alkaline and thermal method. Carbohydr Polym, 99:270–277. https://doi.org/10.1016/j.carbpol.2013.08.029

    Article  PubMed  CAS  Google Scholar 

  • Kang LX, Zhou YL, Ma LX, 2012. Enzymatic preparation of mannose-oligosacchades. Food Sci Technol, 37(7):237–239 (in Chinese). https://doi.org/10.13684/j.cnki.spkj.2012.07.024

    CAS  Google Scholar 

  • Li J, Li B, Geng P, et al., 2017. Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (konjac glucomannan) in water. Food Hydrocoll, 70:14–19. https://doi.org/10.1016/j.foodhyd.2017.03.022

    Article  CAS  Google Scholar 

  • Li JF, Wu MC, Cheng K, et al., 2007. Study on the preparation of oligo-glucomannan using konjak gum by β-mannanase. Food Ferment Ind, 33(1):21–24 (in Chinese). https://doi.org/10.13995/j.cnki.11-1802/ts.2007.01.004

    Google Scholar 

  • Li MY, Feng GP, Xu ZL, et al., 2018. Effect of γ irradiation on the prebiotic functions of konjac glucomannan. Food Sci, 39(11):83–88. https://doi.org/10.7506/spkx1002-6630-201811013

    Google Scholar 

  • Liu HX, Gong JS, Li H, et al., 2015. Biochemical characterization and cloning of an endo-1,4-β-mannanase from Bacillus subtilis YH12 with unusually broad substrate profile. Process Biochem, 50(5):712–721. https://doi.org/10.1016/j.procbio.2015.02.011

    Article  CAS  Google Scholar 

  • Liu J, Xu Q, Zhang J, et al., 2015. Preparation, composition analysis and antioxidant activities of konjac oligoglucomannan. Carbohydr Polym, 130:398–404. https://doi.org/10.1016/j.carbpol.2015.05.025

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Li Y, Zhang B, 2016. The effects of konjac oligosaccharide on TNBS-induced colitis in rats. Int Immunopharmacol, 40:385–391. https://doi.org/10.1016/j.intimp.2016.08.040

    Article  PubMed  CAS  Google Scholar 

  • Liu RX, Li YC, Zhang B, 2017. Effect of konja coligosaccharide on gut microbiota in rats with ulcerative colitis. J Chin Instit Food Sci Technol, 17(6):53–59 (in Chinese). https://doi.org/10.16429/j.1009-7848.2017.06.007

    Google Scholar 

  • Mikkelson A, Maaheimo H, Hakala TK, 2013. Hydrolysis of konjac glucomannan by Trichoderma reesei mannanase and endoglucanases Cel7B and Cel5A for the production of glucomannooligosaccharides. Carbohydr Res, 372:60–68. https://doi.org/10.1016/j.carres.2013.02.012

    Article  PubMed  CAS  Google Scholar 

  • Pan T, Peng S, Xu Z, et al., 2013. Synergetic degradation of konjac glucomannan by γ-ray irradiation and hydrogen peroxide. Carbohydr Polym, 93(2):761–767. https://doi.org/10.1016/j.carbpol.2012.11.075

    Article  PubMed  CAS  Google Scholar 

  • Primec M, Mičetić-Turk D, Langerholc T, 2017. Analysis of short-chain fatty acids in human feces: a scoping review. Anal Biochem, 526:9–21. https://doi.org/10.1016/j.ab.2017.03.007

    Article  PubMed  CAS  Google Scholar 

  • Qin QJ, Zhang Y, Liu BY, et al., 2013. Optimization of the preparation of konjac oligo-glucomannan in semi-drying enzymatic hydrolysis method and its antioxidant capacity. Sci Tech Food Ind, 34(23):186–191 (in Chinese). https://doi.org/10.13386/j.issn1002-0306.2013.23.004

    CAS  Google Scholar 

  • Qin QJ, Xu XQ, Zhang Y, et al., 2014. Toxicological and prebiotic evaluation of konjac oligosaccharides. Food Sci, 35(21):244–248 (in Chinese). https://doi.org/10.7506/spkx1002-6630-201421048

    CAS  Google Scholar 

  • Sivaprakasam S, Prasad PD, Singh N, 2016. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol Ther, 164:144–151. https://doi.org/10.1016/j.pharmthera.2016.04.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suwannaporn P, Thepwong K, Tester R, et al., 2013. Tolerance and nutritional therapy of dietary fibre from konjac glucomannan hydrolysates for patients with inflammatory bowel disease (IBD). Bioact Carbohydr Diet Fibre, 2(2): 93–98. https://doi.org/10.1016/j.bcdf.2013.09.005

    Article  CAS  Google Scholar 

  • Suzuki H, Oomizu S, Yanase Y, et al., 2010. Hydrolyzed konjac glucomannan suppresses IgE production in mice B cells. Int Arch Allergy Immumol, 152(2):122–130. https://doi.org/10.1159/000265533

    Article  CAS  Google Scholar 

  • Tao JH, Duan JA, Jiang S, et al., 2016. Simultaneous determination of six short-chain fatty acids in colonic contents of colitis mice after oral administration of polysaccharides from Chrysanthemum morifolium Ramat by gas chromatography with flame ionization detector. J Chromatogr B Analyt Technol Biomed Life Sci, 1029-1030: 88–94. https://doi.org/10.1016/j.jchromb.2016.07.002

    Article  PubMed  CAS  Google Scholar 

  • Tester R, Al-Ghazzewi F, 2017. Glucomannans and nutrition. Food Hydrocoll, 68:246–254. https://doi.org/10.1016/j.foodhyd.2016.05.017

    Article  CAS  Google Scholar 

  • Tester R, Al-Ghazzewi F, Shen N, 2012. The use of konjac glucomannan hydrolysates to recover healthy microbiota in infected vaginas treated with an antifungal agent. Benef Microbes, 3(1):61–66. https://doi.org/10.3920/BM2011.0021

    Article  PubMed  CAS  Google Scholar 

  • Unger MM, Spiegel J, Dillmann KU, et al., 2016. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord, 32:66–72. https://doi.org/10.1016/j.parkreldis.2016.08.019

    Article  PubMed  Google Scholar 

  • van Zyl WH, Rose SH, Trollope K, et al., 2010. Fungal β-mannanases: mannan hydrolysis, heterologous production and biotechnological applications. Process Biochem, 45(8):1203–1213. https://doi.org/10.1016/j.procbio.2010.05.011

    Article  CAS  Google Scholar 

  • Wan JJ, Jiang M, Li H, et al., 2015. Effects of low polymerization degree konjacmannan-oligosaccharide on intestinal and microflora of normal mice. Food Ferment Ind, 41(9):13–18 (in Chinese). https://doi.org/10.13995/j.cnki.11-1802/ts.201519003

    CAS  Google Scholar 

  • Wang CH, Lai P, Chen ME, et al., 2008. Antioxidative capacity produced by Bifidobacterium- and Lactobacillus acidophilus-mediated fermentations of konjac glucomannan and glucomannan oligosaccharides. J Sci Food Agric, 88(7):1294–1300. https://doi.org/10.1002/jsfa.3226

    Article  CAS  Google Scholar 

  • Wang L, Tan SS, Song R, et al., 2015. Synergistic effect of konjac oligosaccharides/isomalto-oligosaccharide complex on the growth of Lactobacillus acidophilus. Mod Food Sci Technol, 31(10):151–155 (in Chinese). https://doi.org/10.13982/j.mfst.1673-9078.2015.10.026

    CAS  Google Scholar 

  • Wang M, Shuai TG, Qin QJ, et al., 2016a. Effect of konjac oligosaccharides on rat intestinal environment. Food Sci, 37(7):197–203 (in Chinese). https://doi.org/10.7506/spkx1002-6630-201607036

    Google Scholar 

  • Wang M, Jiang M, Li H, et al., 2016b. Investigation on the regular patterns of mannan oligosaccharides degradation and utilization by lactic acid bacteria. Food Ferment Ind, 42(11):20–24 (in Chinese). https://doi.org/10.13995/j.cnki.11-1802/ts.201611004

    Google Scholar 

  • Wu CF, Dong YY, Li JJ, et al., 2010. Study on the preparation of konjac oligo-glucomannan by β-mannanase. Biotechnol Bull, (1):118–122 (in Chinese). https://doi.org/10.13560/j.cnki.biotech.bull.1985.2010.01.016

    Google Scholar 

  • Xu CM, Wu MC, Li JF, et al., 2008. Study on hydrolytic conditions of konjak glucomannan by β-mannanase. J Food Sci Biotechnol, 27(3):120–124 (in Chinese).

    CAS  Google Scholar 

  • Xu LP, Wu ZY, Ren FX, et al., 2011. Study on the optimization of the enzymatic hydrolysis conditions of konjac gum. J Anhui Agric Sci, 39(21):13058–13059 (in Chinese). https://doi.org/10.3969/j.issn.0517-6611.2011.21.151

    CAS  Google Scholar 

  • Xu MD, Ke L, Zeng Q, et al., 2005. Investigated production of mannan-oligosaccharides using konjac power by β-mannan mannohydrolase from Aspergillus niger. Acta Agric Boreali-Occidentalis Sin, 14(6):115–118 (in Chinese). https://doi.org/10.3969/j.issn.1004-1389.2005.06.027

    CAS  Google Scholar 

  • Xu SC, Li YL, Liu Y, et al., 2011. Study on the preparation of feeding oligo-glucomannan by enzymatic method. Feed Ind, 32(2):47–49 (in Chinese).

    Google Scholar 

  • Xu ZL, Sun YM, Yang YH, et al., 2007. Effect of γ-irradiation on some physiochemical properties of konjac glucomannan. Carbohydr Polym, 70(4):444–450. https://doi.org/10.1016/j.carbpol.2007.05.011

    Article  CAS  Google Scholar 

  • Yang J, Vittori N, Wang W, et al., 2017. Molecular weight distribution and fermentation of mechanically pre-treated konjac enzymatic hydrolysates. Carbohydr Polym, 159: 58–65. https://doi.org/10.1016/j.carbpol.2016.12.014

    Article  PubMed  CAS  Google Scholar 

  • Yao X, Luo XG, Han BC, 2011. Study on the enzymecatalyzed degradation of konjac glucomannan and the preparation conditions on the degradation product of various molecular weights. Sci Tech Food Ind, 32(9): 97–101 (in Chinese). https://doi.org/10.13386/j.issn1002-0306.2011.09.047

    CAS  Google Scholar 

  • Zhang YQ, Gan X, Xie BJ, 2003. Preparation of konjac oligoglucomannan by cellulase. J Jinshou Univ (Nat Sci Ed), 3:42–44 (in Chinese).

    Google Scholar 

  • Zhang ZS, Wang XM, Liu CB, et al., 2016. The degradation, antioxidant and antimutagenic activity of the mucilage polysaccharide from Dioscorea opposita. Carbohydr Polym, 150:227–231. https://doi.org/10.1016/j.carbpol.2016.05.034

    Article  PubMed  CAS  Google Scholar 

  • Zheng Q, Wu Y, Xu H, et al., 2015. The effects of dietary oxidized konjac glucomannan and its acidolysis products on the immune response, expression of immune related genes and disease resistance of Schizothorax prenanti. Fish Shellfish Immunol, 45(2):551–559. https://doi.org/10.1016/j.fsi.2015.05.016

    Article  PubMed  CAS  Google Scholar 

  • Zheng Q, Wu Y, Xu H, et al., 2016. Immune responses to Aeromonas hydrophila infection in Schizothorax prenanti fed with oxidized konjac glucomannan and its acidolysis product. Fish Shellfish Immunol, 49:260–267. https://doi.org/10.1016/j.fsi.2015.12.042

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-song Shi.

Additional information

Project supported by the National First-Class Discipline Program of Light Industry Technology and Engineering (Nos. LITE2018-18 and LITE2018-11) of China, the Transformation Project for Major Scientific and Technological Achievements in Jiangsu Province (No. BA2015006), the Industry-Academia Cooperation Innovation Fund Project of Jiangsu Province (No. BY2016022-19), and the National Key Technologies R&D Program of China for the 12th Five-year Plan (No. 2012BAD33B06)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Li, H., Shi, Js. et al. Depolymerized konjac glucomannan: preparation and application in health care. J. Zhejiang Univ. Sci. B 19, 505–514 (2018). https://doi.org/10.1631/jzus.B1700310

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1700310

Key words

CLC number

关键词