Skip to main content
Log in

Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection

高脂饮食联合低剂量链脲佐菌素造大鼠二型糖尿病模型稳定性的研究

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

The present study aims at determining the stability of a popular type 2 diabetes rat model induced by a high-fat diet combined with a low-dose streptozotocin injection.

Methods

Wistar rats were fed with a high-fat diet for 8 weeks followed by a one-time injection of 25 or 35 mg/kg streptozotocin to induce type 2 diabetes. Then the diabetic rats were fed with regular diet/high-fat diet for 4 weeks. Changes in biochemical parameters were monitored during the 4 weeks.

Results

All the rats developed more severe dyslipidemia and hepatic dysfunction after streptozotocin injection. The features of 35 mg/kg streptozotocin rats more resembled type 1 diabetes with decreased body weight and blood insulin. Rats with 25 mg/kg streptozotocin followed by normal diet feeding showed normalized blood glucose level and pancreatic structure, indicating that normal diet might help recovery from certain symptoms of type 2 diabetes. In comparison, diabetic rats fed with high-fat diet presented decreased but relatively stable blood glucose level, and this was significantly higher than that of the control group (P>0.05).

Conclusions

This model easily recovers with normal diet feeding. A high-fat diet is suggested as the background diet in future pharmacological studies using this model.

中文概要

目的

探讨高脂饮食联合低剂量链脲佐菌素(STZ)造 大鼠二型糖尿病模型在不同饮食背景下的稳定 性。

创新点

首次探讨在正常饮食和高脂饮食的背景下,该常 见的大鼠二型糖尿病模型的稳定性。可为造模后 期干预阶段的饲料选择提供依据。

方法

饲喂Wistar 大鼠高脂饮食8 周后,注射25 或 35 mg/kg STZ 来诱导二型糖尿病。之后每组分别 饲喂正常饲料和高脂饲料4 周,检测血液生化指 标的稳定性。

结论

不管在何种饮食下,糖尿病大鼠都出现了空腹血 糖显著恢复,血脂紊乱加剧的现象。其中35 mg/kg STZ 注射组大鼠的特征更接近一型糖尿病,而 25 mg/kg STZ 注射组大鼠表现出二型糖尿病的特 征。相比高脂饮食,正常饮食更容易导致空腹血 糖和胰岛结构的恢复。因此,在正常饮食下该模 型稳定性欠佳,在后期的药理学实验中推荐使用 高脂饮食。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhattacharya S, Dey D, Roy SS, 2007. Molecular mechanism of insulin resistance. J Biosci, 32(2):405–413. https://doi.org/10.1007/s12038-007-0038-8

    Article  PubMed  CAS  Google Scholar 

  • Bibak B, Khalili M, Rajaei Z, et al., 2014. Effects of melatonin on biochemical factors and food and water consumption in diabetic rats. Adv Biomed Res, 3(1):173. https://doi.org/10.4103/2277-9175.139191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garg A, Misra A, 2002. Hepatic steatosis, insulin resistance, and adipose tissue disorders. J Clin Endocrinol Metab, 87(7):3019–3022. https://doi.org/10.1210/jcem.87.7.8736

    Article  PubMed  CAS  Google Scholar 

  • Hotamisligil GS, Shargill NS, Spiegelman BM, 1993. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science, 259(5091):87–91. https://doi.org/10.1126/science.7678183

    Article  PubMed  CAS  Google Scholar 

  • Institute of Laboratory Animal Resources Committee, 1996. Guide for the Care and Use of Laboratory Animals. National Academy Press, Washington DC.

    Google Scholar 

  • Ji J, Zhang C, Luo X, et al., 2015. Effect of stay-green wheat, a novel variety of wheat in China, on glucose and lipid metabolism in high-fat diet induced type 2 diabetic rats. Nutrients, 7(7):5143–5155. https://doi.org/10.3390/nu7075143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JS, Son HS, Maeng YS, et al., 1994. Effects of buckwheat on organ weight, glucose and lipid metabolism in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr, 27(8):819–827.

    Google Scholar 

  • Leedom LJ, Meehan WP, 1989. The psychoneuroendocrinology of diabetes mellitus in rodents. Psychoneuroendocrinology, 14(4):275–294. https://doi.org/10.1016/0306-4530(89)90030-9

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zhang H, Ji B, et al., 2014. A diet formula of Puerariae radix, Lycium barbarum, Crataegus pinnatifida, and Polygonati rhizoma alleviates insulin resistance and hepatic steatosis in CD-1 mice and HepG2 cells. Food Funct, 5(5):1038–1049. https://doi.org/10.1039/C3FO60524H

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Quan J, Tsai J, et al., 1998. Nongenetic mouse models of non-insulin-dependent diabetes mellitus. Metabolism, 47(6):663–668. https://doi.org/10.1016/S0026-0495(98)90027-0

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud AM, Ashour MB, Abdel-Moneim A, et al., 2012. Hesperidin and naringin attenuate hyperglycemiamediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J Diabetes Complications, 26(6):483–490. https://doi.org/10.1016/j.jdiacomp.2012.06.001

    Article  PubMed  Google Scholar 

  • Mansor LS, Gonzalez ER, Cole MA, et al., 2013. Cardiac metabolism in a new rat model of type 2 diabetes using high-fat diet with low dose streptozotocin. Cardiov Diabetol, 12(1):136. https://doi.org/10.1186/1475-2840-12-136

    Article  CAS  Google Scholar 

  • Marx JL, 1979. The HDL: the good cholesterol carriers? Science, 205(4407):677–679.

    Article  PubMed  CAS  Google Scholar 

  • Rathmann W, Giani G, 2004. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 27(10):2568–2569. https://doi.org/10.2337/diacare.27.10.2568

    Article  PubMed  Google Scholar 

  • Reed M, Meszaros K, Entes L, et al., 2000. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism, 49(11):1390–1394. https://doi.org/10.1053/meta.2000.17721

    Article  PubMed  CAS  Google Scholar 

  • Rossmeisl M, Rim JS, Koza RA, et al., 2003. Variation in type 2 diabetes-related traits in mouse strains susceptible to diet-induced obesity. Diabetes, 52(8):1958–1966. https://doi.org/10.2337/diabetes.52.8.1958

    Article  PubMed  CAS  Google Scholar 

  • Sahin K, Onderci M, Tuzcu M, et al., 2007. Effect of chromium on carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus: the fat-fed, streptozotocintreated rat. Metabolism, 56(9):1233–1240. https://doi.org/10.1016/j.metabol.2007.04.021

    Article  PubMed  CAS  Google Scholar 

  • Schnedl WJ, Ferber S, Johnson JH, et al., 1994. STZ transport and cytotoxicity: specific enhancement in GLUT2-expressing cells. Diabetes, 43(11):1326–1333.

    Article  PubMed  CAS  Google Scholar 

  • Shafrir E, 2003. Diabetes in animals: contribution to the understanding of diabetes by study of its etiopathology in animal models. In: Porte D, Sherwin RS, Baron A (Eds.), Diabetes Mellitus. McGraw-Hill, New York.

  • Shatwan IA, Ahmed LA, Badkook MM, 2013. Effect of barley flour, crude cinnamon, and their combination on glycemia, dyslipidemia, and adipose tissue hormones in type 2 diabetic rats. J Med Food, 16(7):656–662. https://doi.org/10.1089/jmf.2012.0083

    Article  PubMed  CAS  Google Scholar 

  • Shaw JE, Sicree RA, Zimmet PZ, 2010. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract, 87(1):4–14. https://doi.org/10.1016/j.diabres.2009.10.007

    Article  PubMed  CAS  Google Scholar 

  • Siri-Tarino PW, Sun Q, Hu FB, et al., 2010. Saturated fatty acids and risk of coronary heart disease: modulation by replacement nutrients. Curr Atherosclerosis Rep, 12(6): 384–390. https://doi.org/10.1007/s11883-010-0131-6

    Article  CAS  Google Scholar 

  • Srinivasan K, Viswanad B, Asrat L, et al., 2005. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res, 52(4):313–320. https://doi.org/10.1016/j.phrs.2005.05.004

    Article  PubMed  CAS  Google Scholar 

  • Tan BKH, Tan CH, Pushparaj PN, 2005. Anti-diabetic activity of the semi-purified fractions of Averrhoa bilimbi in high fat diet fed-streptozotocin-induced diabetic rats. Life Sci, 76(24):2827–2839. https://doi.org/10.1016/j.lfs.2004.10.051

    Article  PubMed  CAS  Google Scholar 

  • Vinson JA, Zhang J, 2005. Black and green teas equally inhibit diabetic cataracts in a streptozotocin-induced rat model of diabetes. J Agric Food Chem, 53(9):3710–3713. https://doi.org/10.1021/jf048052l

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Li J, Lv X, et al., 2009. Ameliorative effect of berberine on endothelial dysfunction in diabetic rats induced by high-fat diet and streptozotocin. Eur J Pharmacol, 620(1-3):131–137. https://doi.org/10.1016/j.ejphar.2009.07.027

    Article  PubMed  CAS  Google Scholar 

  • Wang O, Liu J, Cheng Q, et al., 2015. Effects of ferulic acid and γ-oryzanol on high-fat and high-fructose diet-induced metabolic syndrome in rats. PLoS ONE, 10(2):e0118135. https://doi.org/10.1371/journal.pone.0118135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Campbell T, Perry B, et al., 2011. Hypoglycemic and insulin-sensitizing effects of berberine in high-fat dietand streptozotocin-induced diabetic rats. Metabolism, 60(2):298–305. https://doi.org/10.1016/j.metabol.2010.02.005

    Article  PubMed  CAS  Google Scholar 

  • Watts LM, Manchem VP, Leedom TA, et al., 2005. Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism. Diabetes, 54(6):1846–1853. https://doi.org/10.2337/diabetes.54.6.1846

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Yang J, Chen X, et al., 2010. Antidiabetic and antioxidant effects of extracts from Potentilla discolor Bunge on diabetic rats induced by high fat diet and streptozotocin. J Ethnopharmacol, 132(2):518–524. https://doi.org/10.1016/j.jep.2010.08.053

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Xx., Wang, Y., Wang, K. et al. Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection. J. Zhejiang Univ. Sci. B 19, 559–569 (2018). https://doi.org/10.1631/jzus.B1700254

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1700254

Key words

CLC number

关键词

Navigation