Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity

茉莉酸对油菜(Brassica napus L.)受镉毒害的 缓解作用

Abstract

The well-known detrimental effects of cadmium (Cd) on plants are chloroplast destruction, photosynthetic pigment inhibition, imbalance of essential plant nutrients, and membrane damage. Jasmonic acid (JA) is an alleviator against different stresses such as salinity and drought. However, the functional attributes of JA in plants such as the interactive effects of JA application and Cd on rapeseed in response to heavy metal stress remain unclear. JA at 50 μmol/L was observed in literature to have senescence effects in plants. In the present study, 25 μmol/L JA is observed to be a “stress ameliorating molecule” by improving the tolerance of rapeseed plants to Cd toxicity. JA reduces the Cd uptake in the leaves, thereby reducing membrane damage and malondialdehyde content and increasing the essential nutrient uptake. Furthermore, JA shields the chloroplast against the damaging effects of Cd, thereby increasing gas exchange and photosynthetic pigments. Moreover, JA modulates the antioxidant enzyme activity to strengthen the internal defense system. Our results demonstrate the function of JA in alleviating Cd toxicity and its underlying mechanism. Moreover, JA attenuates the damage of Cd to plants. This study enriches our knowledge regarding the use of and protection provided by JA in Cd stress.

概要

目的

本研究目的在于了解:(1)喷施外源茉莉酸对受 到镉胁迫油菜的作用;(2)是否茉莉酸能够通过增强气体交换,从而保护受到氧化胁迫的地上部分组织的叶绿体,进而通过减少镉的吸收来维持 离子平衡;(3)是否通过喷施茉莉酸来对具有减 缓镉毒害效应的抗氧化酶的活性进行调节。

创新点

茉莉酸能够调节响应胁迫的抗氧化酶的活性,从而通过保护叶绿体免受活性氧(ROS)伤害而提高光合产物的能力,最大限度地缓解油菜植株受到的镉毒害。

方法

(1)叶片气体交换;(2)叶片光合色素分析;(3) 丙二醛与抗氧化酶活性分析;(4)营养成分分析; (5)透射电镜亚细胞水平观察。

结论

茉莉酸对于植物受镉毒害的缓解作用的机理在于减少叶片中镉的积累,从而减轻氧化胁迫过程中产生的ROS 对于膜系统的损害程度。

This is a preview of subscription content, log in to check access.

References

  1. Ahmad P, Nabi G, Ashraf M, 2011. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South Afr J Bot, 771:36–44. https://doi.org/10.1016/j.sajb.2010.05.003

    CAS  Article  Google Scholar 

  2. Ali E, Maodzeka A, Hussain N, et al., 2015. The alleviation of cadmium toxicity in oilseed rape (Brassica napus) by the application of salicylic acid. Plant Growth Regul, 753: 641–655. https://doi.org/10.1007/s10725-014-9966-0

    CAS  Article  Google Scholar 

  3. Azevedo BM, Bastos FGC, Viana TVA, et al., 2005. Feitos de niveis de irrigacao na cultura da melancia. Rev Cienc Agron, 36:9–15 (in Portuguese).

    Google Scholar 

  4. Borges R, Miguel EC, Dias JMR, et al., 2004. Ultrastructural, physiological and biochemical analyses of chlorate toxicity on rice seedlings. Plant Sci, 1664:1057–1062. https://doi.org/10.1016/j.plantsci.2003.12.023

    CAS  Article  Google Scholar 

  5. Cakmak I, Marschner H, 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol, 984:1222–1227. https://doi.org/10.1104/pp.98.4.1222

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  6. Chen H, Zheng C, Tu C, et al., 1999. Heavy metal pollution in soils in China: status and countermeasures. Ambio, 282: 130–134.

    Google Scholar 

  7. Chen J, Yan ZZ, Li XZ, 2014. Effect of methyl jasmonate on cadmium uptake and antioxidative capacity in Kandelia obovata seedlings under cadmium stress. Ecotoxicol Environ Safety, 104:349–356. https://doi.org/10.1016/j.ecoenv.2014.01.022

    CAS  PubMed  Article  Google Scholar 

  8. Clemens S, 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 8811:1707–1719. https://doi.org/10.1016/j.biochi.2006.07.003

    CAS  PubMed  Article  Google Scholar 

  9. Creelman RA, Mullet JE, 1995. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA, 9210:4114–4119. https://doi.org/10.1073/pnas.92.10.4114

    CAS  PubMed  Article  Google Scholar 

  10. Creelman RA, Mullet JE, 1997. Biosynthesis and action of jasmonates in plants. Ann Rev Plant Physiol Plant Mol Biol, 481:355–381. https://doi.org/10.1146/annurev.arplant.48.1.355

    CAS  Article  Google Scholar 

  11. Czerpak R, Piotrowska A, Szulecka K, 2006. Jasmonic acid affects changes in the growth and some components content in alga Chlorella vulgaris. Acta Physiol Plant, 283:195–203. https://doi.org/10.1007/BF02706531

    CAS  Article  Google Scholar 

  12. Fan SK, Zhu J, Tian WH, et al., 2017. Effects of split applications of nitrogen fertilizers on the Cd level and nutritional quality of Chinese cabbage. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 1810:897–905. https://doi.org/10.1631/jzus.B1600272

    CAS  Article  Google Scholar 

  13. Garg N, Manchanda G, 2009. ROS generation in plants: boon or bane? Plant Biosyst, 1431:81–96. https://doi.org/10.1080/11263500802633626

    Article  Google Scholar 

  14. Giannopolitis CN, Ries SK, 1977. Superoxide dismutases. I. Occurrence in higher plants. Plant Physiol, 592:309–314. https://doi.org/10.1104/pp.59.2.309

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  15. Guan YZ, Zhao J, Chen SB, 2012. Study on direct sowing cultivation techniques of high-quality, high-yielding and high-resistant rapeseed variety Zheda 619. Acta Agric Jiangxi, 24:26–27.

    Google Scholar 

  16. Hodges DM, DeLong JM, Forney CF, et al., 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 2074:604–611. https://doi.org/10.1007/s004250050524

    CAS  Article  Google Scholar 

  17. Hussain N, Jabeen Z, Li YL, et al., 2013. Detection of tocopherol in oilseed rape (Brassica napus L.) using gas chromatography with flame ionization detector. J Integr Agric, 125:803–814. https://doi.org/10.1016/S2095-3119(13)60301-9

    Article  Google Scholar 

  18. Hussain N, Li H, Jiang YX, et al., 2014. Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 152:181–193. https://doi.org/10.1631/jzus.B1300036

    CAS  Article  Google Scholar 

  19. Jiao WT, Chen WP, Chang AC, et al., 2012. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review. Environ Pollut, 168:44–53. https://doi.org/10.1016/j.envpol.2012.03.052

    CAS  PubMed  Article  Google Scholar 

  20. Kanwar MK, Bhardwaj R, Arora P, et al., 2012. Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere, 861:41–49. https://doi.org/10.1016/j.chemosphere.2011.08.048

    CAS  PubMed  Article  Google Scholar 

  21. Kaya A, Doganlar ZB, 2016. Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic. Ecotoxicol Environ Safety, 124: 470–479. https://doi.org/10.1016/j.ecoenv.2015.11.026

    CAS  PubMed  Article  Google Scholar 

  22. Keramat B, Kalantari KM, Arvin MJ, 2009. Effects of methyl jasmonate in regulating cadmium induced oxidative stress in soybean plant (Glycine max L.). Afr J Microbiol Res, 315:240–244.

    Google Scholar 

  23. Kim HJ, Fonseca JM, Choi JH, et al., 2007. Effect of methyl jasmonate on phenolic compounds and carotenoids of romaine lettuce (Lactuca sativa L.). J Agric Food Chem, 5525:10366–10372. https://doi.org/10.1021/jf071927m

    CAS  PubMed  Article  Google Scholar 

  24. Kovácik J, Klejdus B, Hedbavny J, et al., 2011. Significance of phenols in cadmium and nickel uptake. J Plant Physiol, 1686:576–584. https://doi.org/10.1016/j.jplph.2010.09.011

    PubMed  Article  CAS  Google Scholar 

  25. Larson RA, 1988. The antioxidants of higher plants. Phytochemistry, 274:969–978. https://doi.org/10.1016/0031-9422(88)80254-1

    CAS  Article  Google Scholar 

  26. López-Millán AF, Sagardoy R, Solanas M, et al., 2009. Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot, 65(2-3):376–385. https://doi.org/10.1016/j.envexpbot.2008.11.010

    Article  CAS  Google Scholar 

  27. Lux A, Martinka M, Vaculík M, et al., 2011. Root responses to cadmium in the rhizosphere: a review. J Exp Bot, 621: 21–37. https://doi.org/10.1093/jxb/erq281

    CAS  PubMed  Article  Google Scholar 

  28. Maxwell K, Johnson GN, 2000. Chlorophyll fluorescence— a practical guide. J Exp Bot, 51345:659–668. https://doi.org/10.1093/jxb/51.345.659

    CAS  PubMed  Article  Google Scholar 

  29. Memelink J, Verpoorte R, Kijne JW, 2001. ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci, 65:212–219. https://doi.org/10.1016/S1360-1385(01)01924-0

    CAS  PubMed  Article  Google Scholar 

  30. Meng H, Hua S, Shamsi IH, et al., 2009. Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators. Plant Growth Regul, 581: 47–59. https://doi.org/10.1007/s10725-008-9351-y

    CAS  Article  Google Scholar 

  31. Metodiev MV, Tsonev TD, Popova LP, 1996. Effect of jasmonic acid on the stomatal and nonstomatal limitation of leaf photosynthesis in barley leaves. J Plant Growth Regul, 152:75–80. https://doi.org/10.1007/BF00192935

    CAS  Article  Google Scholar 

  32. Mobin M, Khan NA, 2007. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol, 1645:601–610. https://doi.org/10.1016/j.jplph.2006.03.003

    CAS  PubMed  Article  Google Scholar 

  33. Nakano Y, Asada K, 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in Spinach chloroplasts. Plant Cell Physiol, 225:867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    CAS  Google Scholar 

  34. Niu L, Yang F, Xu C, et al., 2013. Status of metal accumulation in farmland soils across China: from distribution to risk assessment. Environ Pollut, 176:55–62. https://doi.org/10.1016/j.envpol.2013.01.019

    CAS  PubMed  Article  Google Scholar 

  35. Perfus-Barbeoch L, Leonhardt N, Vavasseur A, et al., 2002. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J, 324:539–548. https://doi.org/10.1046/j.1365-313X.2002.01442.x

    CAS  PubMed  Article  Google Scholar 

  36. Pinto AP, Mota AM, de Varennes A, et al., 2004. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Total Environ, 326(1-3): 239–247. https://doi.org/10.1016/j.scitotenv.2004.01.004

    CAS  PubMed  Article  Google Scholar 

  37. Piotrowska A, Bajguz A, Godlewska-Zylkiewicz B, et al., 2009. Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot, 663:507–513. https://doi.org/10.1016/j.envexpbot.2009.03.019

    CAS  Article  Google Scholar 

  38. Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, et al., 2012. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem, 52:52–65. https://doi.org/10.1016/j.plaphy.2011.11.009

    CAS  PubMed  Article  Google Scholar 

  39. Popova LP, Maslenkova LT, Yordanova RY, et al., 2009. Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem, 473: 224–231. https://doi.org/10.1016/j.plaphy.2008.11.007

    CAS  PubMed  Article  Google Scholar 

  40. Ramos I, Esteban E, Lucena JJ, et al., 2002. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd–Mn interaction. Plant Sci, 1625:761–767. https://doi.org/10.1016/S0168-9452(02)00017-1

    CAS  Article  Google Scholar 

  41. Sandalio LM, Dalurzo HC, Gómez M, et al., 2001. Cadmiuminduced changes in the growth and oxidative metabolism of pea plant. J Exp Bot, 52364:2115–2126. https://doi.org/10.1093/jexbot/52.364.2115

    CAS  PubMed  Article  Google Scholar 

  42. Satler SO, Thimann KV, 1981. Le jasmonate de methyle: nou-veau et puissant promoteur de la senescence des feuilles. Compt Rend Acad Sci Paris Ser III, 293:735–740 (in French).

    CAS  Google Scholar 

  43. Shamsi IH, Wei K, Zhang GP, et al., 2008. Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. Biol Plant, 521:165–169. https://doi.org/10.1007/s10535-008-0036-1

    CAS  Article  Google Scholar 

  44. Shamsi IH, Jiang LX, Wei K, et al., 2010. Alleviation of cadmium toxicity in soybean by potassium supplementation. J Plant Nut, 3313:1926–1938. https://doi.org/10.1080/01904167.2010.512052

    CAS  Article  Google Scholar 

  45. Sorial ME, El Gamal SM, Gendy AA, 2010. Response of sweet basil to jasmonic acid application in relation to different water supplies. Biosci Res, 71:39–47.

    Google Scholar 

  46. Steel RGD, Torrie JH, 1980. Principles and Procedures of Statistics: a Biometrical Approach, 2nd Ed. McGraw-Hill, New York.

    Google Scholar 

  47. Thaler JS, Fidantsef AL, Duffey SS, et al., 1999. Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. J Chem Ecol, 257:1597–1609. https://doi.org/10.1023/A:1020840900595

    CAS  Article  Google Scholar 

  48. Tsonev TD, Lazova GN, Stoinova ZG, et al., 1998. A possible role for jasmonic acid in adaptation of barley seedlings to salinity stress. J Plant Growth Regul, 173:153–159. https://doi.org/10.1007/PL00007029

    CAS  Article  Google Scholar 

  49. Uzunova AN, Popova LP, 2000. Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica, 382:243–250. https://doi.org/10.1023/A:1007226116925

    CAS  Article  Google Scholar 

  50. Vijaranakul U, Jayaswal RK, Nadakavukaren MJ, 2001. Alteration in chloroplast ultrastructure of suspension cultured Nicotiana tabaccum cells by cadmium. Sci Asia, 27:227–231.

    CAS  Google Scholar 

  51. Wang LS, Wang L, Wang L, et al., 2009. Effect of 1-butyl-3-methylimidazolium tetrafluoroborate on the wheat (Triticum aestivum L.) seedlings. Environ Toxicol, 243:296–303. https://doi.org/10.1002/tox.20435

    CAS  PubMed  Article  Google Scholar 

  52. Wu CF, Zhang LM, 2010. Heavy metal concentrations and their possible sources in paddy soils of a modern agricultural zone, southeastern China. Environ Earth Sci, 601:45–56. https://doi.org/10.1007/s12665-009-0168-4

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank Miss Mei LI of Zhejiang Key Laboratory of Crop Gene Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China for her technical assistance and Miss Jun-ying LI of Electron Microscopy Center, Zhejiang University for processing TEM samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Li-xi Jiang.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2015CB150205) and the National Natural Science Foundation of China (No. 31671597)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, E., Hussain, N., Shamsi, I.H. et al. Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity. J. Zhejiang Univ. Sci. B 19, 130–146 (2018). https://doi.org/10.1631/jzus.B1700191

Download citation

Keywords

  • Rapeseed
  • Cadmium
  • Jasmonic acid
  • Antioxidant enzyme
  • Malondialdehyde
  • Ultrastructure

关键词

  • 油菜
  • 茉莉酸
  • 抗氧化酶
  • 丙二醛
  • 超微结构