Skip to main content
Log in

In vitro antioxidant activity of phenolic-enriched extracts from Zhangping Narcissus tea cake and their inhibition on growth and metastatic capacity of 4T1 murine breast cancer cells

漳平水仙饼茶中酚类提取物的体外抗氧化活性及对小鼠乳腺癌4T1 细胞增殖和转移的抑制作用

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Phenolics, as the main bioactive compounds in tea, have been suggested to have potential in the prevention of various human diseases. However, little is known about phenolics and their bioactivity in Zhangping Narcissue tea cake which is considered the most special kind of oolong tea. To unveil its bioactivity, three phenolic-enriched extracts were obtained from Zhangping Narcissue tea cake using ethyl acetate, n-butanol, and water. Their main chemical compositions and in vitro bioactivity were analyzed by high-performance liquid chromatography (HPLC) and ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). The ethyl acetate fraction (ZEF) consisted of higher content of phenolics, flavonoids, procyanidins, and catechin monomers (including epigallocatechin gallate (EGCG), epicatechin gallate (ECG), and gallocatechin gallate (GCG)) than n-butanol fraction (ZBF) and water fraction (ZWF). ZEF exhibited the strongest antioxidant capacity in vitro due to its abundant bioactive compounds. This was validated by Pearson correlation and hierarchical clustering analyses. ZEF also showed a remarkable inhibition on the growth, migration, and invasion of 4T1 murine breast cancer cells.

概要

目的

探讨不同提取方法所得的漳平水仙饼茶中提取物 的主要化学成分、体外抗氧化作用和对小鼠乳腺 癌4T1 细胞增殖和转移的抑制作用。

创新点

首次对漳平水仙饼茶中不同提取物的主要化学成 分、体外抗氧化作用和对小鼠乳腺癌4T1 细胞增 殖和转移的抑制作用进行了研究。

方法

以漳平水仙饼茶为原料,利用乙酸乙酯、正丁醇 和水分别进行萃取,得到三种提取物。对提取物 的茶多酚、黄酮、原花青素、总糖、蛋白质、氨 基酸、儿茶素单体、茶黄素、咖啡碱等主要化学 成分进行检测。利用DPPH、ABTS 和FRAP 三 种不同方法进一步检测了三种提取物的体外抗 氧化性,并评价了提取物对小鼠乳腺癌4T1 细胞 的增殖、细胞周期、迁移、侵袭等的影响作用。 同时,采用皮尔森系数分析和聚类分析两种分析 方法探讨了提取物中的化学成分与其抗氧化活 性和对4T1 细胞作用的相关性。

结论

本实验结果显示,漳平水仙饼茶乙酸乙酯层提取 物具有最高的茶多酚、黄酮、原花青素和儿茶素 单体的含量(表1~3,图1),并且在三种不同 的抗氧化体系中均显示出最强的抗氧化性能 (表4,图2),同时对小鼠乳腺癌4T1 细胞的 增殖、细胞周期、迁移、侵袭有非常明显的抑制 作用(图3~6)。乙酸乙酯层提取物之所以具有 最强的生物活性主要与其含有较多的茶多酚等 活性成分有关(表5,图3)。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benzie IFF, Strain JJ, 1999. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol, 299:15–27. https://doi.org/10.1016/S0076-6879(99)99005-5

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72(1-2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Luo Q, Sun M, et al., 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci, 74(17):2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047

    Article  CAS  PubMed  Google Scholar 

  • Chavan U, Shahidi F, Naczk M, 2001. Extraction of condensed tannins from beach pea (Lathyrus maritimus L.) as affected by different solvents. Food Chem, 75(4):509–512. https://doi.org/10.1016/S0308-8146(01)00234-5

    Article  CAS  Google Scholar 

  • Chen H, Qu Z, Fu L, et al., 2009. Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea. J Food Sci, 74(6):C469–C474. https://doi.org/10.1111/j.1750-3841.2009.01231.x

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ye HL, Zhang G, et al., 2014. Autophagy inhibition contributes to the synergistic interaction between EGCG and doxorubicin to kill the hepatoma Hep3B cells. PLoS ONE, 9(1):e85771. https://doi.org/10.1371/journal.pone.0085771

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Lu B, Yang Q, et al., 2009. Combined integrin phosphoproteomic analyses and small interfering RNAbased functional screening identify key regulators for cancer cell adhesion and migration. Cancer Res, 69(8): 3713–3720. https://doi.org/10.1158/0008-5472.CAN-08-2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou J, Lee VSY, Jason TC, et al., 2007. Identification and comparison of phenolic compounds in the preparation of oolong tea manufactured by semifermentation and drying processes. J Agric Food Chem, 55(18):7462–7468. https://doi.org/10.1021/jf0718603

    Article  CAS  PubMed  Google Scholar 

  • Du GJ, Wang CZ, Qi LW, et al., 2013. The synergistic apoptotic interaction of panaxadiol and epigallocatechin gallate in human colorectal cancer cells. Phytother Res, 27(2):272–277. https://doi.org/10.1002/ptr.4707

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ, 2000. Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809):239–247. https://doi.org/10.1038/35041687

    Article  CAS  PubMed  Google Scholar 

  • Fraser K, Harrison SJ, Lane GA, et al., 2012. HPLC-MS/MS profiling of proanthocyanidins in teas: a comparative study. J Food Compost Anal, 26(1-2):43–51. https://doi.org/10.1016/j.jfca.2012.01.004

    Article  CAS  Google Scholar 

  • Garcia-Parrilla MC, Heredia FJ, Troncoso AM, et al., 1997. Spectrophotometric determination of total procyanidins in wine vinegars. Talanta, 44(1):119–123. https://doi.org/10.1016/S0039-9140(96)02012-7

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Deng Q, Xie B, et al., 2010. Purification and characterization of an antioxidant protein from ginkgo biloba seeds. Food Res Int, 43(1):86–94. https://doi.org/10.1016/j.foodres.2009.08.015

    Article  CAS  Google Scholar 

  • Kaviarasan S, Naik GH, Gangabhagirathi R, et al., 2007. In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum graecum) seeds. Food Chem, 103(1):31–37. https://doi.org/10.1016/j.foodchem.2006.05.064

    Article  CAS  Google Scholar 

  • Kim IS, Yang MR, Lee OH, et al., 2011. Antioxidant activities of hot water extracts from various spices. Int J Mol Sci, 12(12):4120–4131. https://doi.org/10.3390/ijms12064120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzma P, Druzynska B, Obiedzinski M, 2014. Optimization of extraction conditions of some polyphenolic compounds from parsley leaves (Petroselinum crispum). Acta Sci Pol Technol Aliment, 13(2):145–154. https://doi.org/10.17306/J.AFS.2014.2.4

    Article  PubMed  Google Scholar 

  • Lai L, Fu Q, Liu Y, et al., 2012. Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharm Sin, 33(4):523–530. https://doi.org/10.1038/aps.2011.209

    Article  CAS  Google Scholar 

  • Lambert JD, Lee MJ, Lu H, et al., 2003. Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. J Nutr, 133(12): 4172–4177.

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Liang Y, Dong J, et al., 2007. Decaffeination of fresh green tea leaf (Camellia sinensis) by hot water treatment. Food Chem, 101(4):1451–1456. https://doi.org/10.1016/j.foodchem.2006.03.054

    Article  CAS  Google Scholar 

  • Liu Z, Luo Z, Jia C, et al., 2016. Synergistic effects of Potentilla fruticosa L. leaves combined with green tea polyphenols in a variety of oxidation systems. J Food Sci, 81(5):C1091–C1101. https://doi.org/10.1111/1750-3841.13292

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto N, Kohri T, Okushio K, et al., 1996. Inhibitory effects of tea catechins, black tea extract and oolong tea extract on hepatocarcinogenesis in rat. Jpn J Cancer Res, 87(10):1034–1038. https://doi.org/10.1111/j.1349-7006.1996.tb03106.x

    Article  CAS  PubMed  Google Scholar 

  • Meda A, Lamien CE, Romito M, et al., 2005. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem, 91(3):571–577. https://doi.org/10.1016/j.foodchem.2004.10.006

    Article  CAS  Google Scholar 

  • Milenkovic D, Jude B, Morand C, 2013. MiRNA as molecular target of polyphenols underlying their biological effects. Free Radical Biol Med, 64:40–51. https://doi.org/10.1016/j.freeradbiomed.2013.05.046

    Article  CAS  Google Scholar 

  • Mohsen SM, Ammar ASM, 2009. Total phenolic contents and antioxidant activity of corn tassel extracts. Food Chem, 112(3):595–598. https://doi.org/10.1016/j.foodchem.2008.06.014

    Article  CAS  Google Scholar 

  • Monbaliu S, Wu A, Zhang D, et al., 2010. Multimycotoxin UPLC-MS/MS for tea, herbal infusions and the derived drinkable products. J Agric Food Chem, 58(24):12664–12671. https://doi.org/10.1021/jf1033043

    Article  CAS  PubMed  Google Scholar 

  • Morris DL, 1948. Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science, 107(2775): 254–255. https://doi.org/10.1126/science.107.2775.254

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Gong J, Liu J, et al., 2009. Antioxidant capacity of extract from edible flowers of prunus mume in China and its active components. LWT Food Sci Technol, 42(2): 477–482. https://doi.org/10.1016/j.lwt.2008.09.008

    Article  CAS  Google Scholar 

  • Singh R, Singh S, Kumar S, et al., 2007. Evaluation of antioxidant potential of ethyl acetate extract/fractions of Acacia auriculiformis A. Cunn. Food Chem Toxicol, 45(7):1216–1223. https://doi.org/10.1016/j.fct.2007.01.002

    Article  CAS  PubMed  Google Scholar 

  • Sun SW, Lin YC, Weng YM, et al., 2006. Efficiency improvements on ninhydrin method for amino acid quantification. J Food Compost Anal, 19(2-3):112–117. https://doi.org/10.1016/j.jfca.2005.04.006

    Article  CAS  Google Scholar 

  • Tanaka T, Matsuo Y, Kouno I, 2009. Chemistry of secondary polyphenols produced during processing of tea and selected foods. Int J Mol Sci, 11(1):14–40. https://doi.org/10.3390/ijms11010014

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Bian X, Park J, et al., 2011. Physicochemical properties, in vitro antioxidant activities and inhibitory potential against a-glucosidase of polysaccharides from Ampelopsis grossedentata leaves and stems. Molecules, 16(12):7762–7772. https://doi.org/10.3390/molecules16097762

    Article  CAS  PubMed  Google Scholar 

  • Yang CS, Lambert JD, Sang S, 2009. Antioxidative and anti-carcinogenic activities of tea polyphenols. Arch Toxicol, 83(1):11–21. https://doi.org/10.1007/s00204-008-0372-0

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Qiao L, Zhang X, et al., 2015. Effect of methylated tea catechins from Chinese oolong tea on the proliferation and differentiation of 3T3-L1 preadipocyte. Fitoterapia, 104:45–49. https://doi.org/10.1016/j.fitote.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Yu L, Li J, et al., 2013. ATF3 suppresses metastasis of bladder cancer by regulating gelsolin-mediated remodeling of the actin cytoskeleton. Cancer Res, 73(12): 3625–3637. https://doi.org/10.1158/0008-5472.CAN-12-3879

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xu.

Additional information

Project supported by the Science and Technology Department of Guangdong Province, China (No. 2016B090918118)

Supplementary materials

11585_2018_162_MOESM1_ESM.pdf

In vitro antioxidant activity of phenolic-enriched extracts from Zhangping Narcissus tea cake and their inhibition on growth and metastatic capacity of 4T1 murine breast cancer cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, L., Kong, Dd., Gao, Yy. et al. In vitro antioxidant activity of phenolic-enriched extracts from Zhangping Narcissus tea cake and their inhibition on growth and metastatic capacity of 4T1 murine breast cancer cells. J. Zhejiang Univ. Sci. B 19, 199–210 (2018). https://doi.org/10.1631/jzus.B1700162

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1700162

Keywords

CLC number

关键词

Navigation