Skip to main content
Log in

Interleukin-18, matrix metalloproteinase-22 and -29 are independent risk factors of human coronary heart disease

白细胞介素18、基质金属蛋白酶-22 及-29 与冠心病发生风险的关联研究

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Background

Coronary heart disease (CHD) is characterized by arterial wall inflammation and matrix degradation. Matrix metalloproteinase (MMP)-22 and -29 and pro-inflammatory cytokine interleukin-18 (IL18) are present in human hearts. IL18 may regulate MMP-22 and -29 expression, which may correlate with CHD progression.

Methods and results

Immunoblot analysis showed that IL18 induced MMP-22 expression in human aortic smooth muscle cells. The Mann Whitney test from a prospective study of 194 CHD patients and 68 non-CHD controls demonstrated higher plasma levels of IL18, MMP-22 and -29 in CHD patients than in the controls. A logistic regression test suggested that plasma IL18 (odds ratio (OR)=1.131, P=0.007), MMP-22 (OR=1.213, P=0.040), and MMP-29 (OR=1.198, P=0.033) were independent risk factors of CHD. Pearson’s correlation test showed that IL18 (coefficient (r)=0.214, P=0.045; r=0.246, P=0.031) and MMP-22 (r=0.273, P=0.006; r=0.286, P=0.012) were associated with the Gensini score before and after adjusting for potential confounding factors. The multivariate Pearson’s correlation test showed that plasma MMP-22 levels correlated positively with high-sensitive-C-reactive protein (hs-CRP) (r=0.167, P=0.023), and MMP-29 levels correlated negatively with triglyceride (r=−0.169, P=0.018). Spearman’s correlation test indicated that plasma IL18 levels associated positively with plasma MMP-22 (r=0.845, P<0.001) and MMP-29 (r=0.548, P<0.001).

Conclusions

Our observations suggest that IL18, MMP-22 and -29 serve as biomarkers and independent risk factors of CHD. Increased systemic IL18 in CHD patients may contribute to elevated plasma MMP-22 and -29 levels in these patients.

摘要

目 的

探讨冠心病患者血浆白细胞介素18(IL18)水平是否与基质金属蛋白酶-22 和-29(MMP-22 和MMP-29)的表达水平相关, 以及此类患者血浆中MMP-22 及MMP-29 水平是否升高。

创新点

首次证实在动脉粥样硬化过程中炎症反应可能促进MMP-22 及MMP-29 的表达, IL18 是冠心病患者中调控MMP 表达的炎症因子之一。

方 法

通过免疫印迹分析检测IL18 对人体动脉平滑肌细胞MMP-22 的表达; 通过Mann Whitney 检验对来自于194 例冠心病患者和68 例对照组的前瞻性研究进行分析; 通过logistic 回归分析冠心病的独立风险因素; 通过Pearson 相关性分析IL18 和MMP-22 的表达水平与冠状动脉Gensini 积分的相关性; 通过多变量Pearson 相关性分析血浆MMP-22 水平与超敏C 反应蛋白(hs-CRP)及甘油三酯水平的相关性; 通过Spearman 相关性分析血浆IL18 水平与MMP-22 和MMP-29 的相关性。

结 论

冠心病患者血浆IL18 水平升高可能导致此类患者血浆MMP-22和MMP-29水平升高。IL18、MMP-22和MMP-29 可能是冠心病的生物标记物和独立风险因素。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, M., Shapiro, S., Lahat, N., et al., 2002. The role of IL-18 and IL-12 in the modulation of matrix metalloproteinases and their tissue inhibitors in monocytic cells. Int. Immunol., 14(12): 1449–1457. http://dx.doi.org/10.1093/intimm/dxf108

    Article  CAS  PubMed  Google Scholar 

  • Anderson, J.L., Adams, C.D., Antman, E.M., et al., 2013. 2012 ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol., 61(23): e179–e347. http://dx.doi.org/10.1016/j.jacc.2013.01.014

    Article  PubMed  Google Scholar 

  • Arbab-Zadeh, A., Fuster, V., 2015. The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J. Am. Coll. Cardiol., 65(8): 846–855. http://dx.doi.org/10.1016/j.jacc.2014.11.041

    Article  PubMed  PubMed Central  Google Scholar 

  • Blankenberg, S., Tiret, L., Bickel, C., et al., 2002. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation, 106(1): 24–30. http://dx.doi.org/10.1161/01.CIR.0000020546.30940.92

    Article  CAS  PubMed  Google Scholar 

  • Blankenberg, S., Luc, G., Ducimetiere, P., et al., 2003. Interleukin-18 and the risk of coronary heart disease in European men: the prospective epidemiological study of myocardial infarction (PRIME). Circulation, 108(20): 2453–2459. http://dx.doi.org/10.1161/01.CIR.0000099509.76044.A2

    Article  CAS  PubMed  Google Scholar 

  • Chalikias, G.K., Tziakas, D.N., Kaski, J.C., et al., 2005. Interleukin-18:interleukin-10 ratio and in-hospital adverse events in patients with acute coronary syndrome. Atherosclerosis, 182(1): 135–143. http://dx.doi.org/10.1016/j.atherosclerosis.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  • Cheng, C., Tempel, D., van Haperen, R., et al., 2006. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation, 113(23): 2744–2753. http://dx.doi.org/10.1161/CIRCULATIONAHA.105.590018

    Article  PubMed  Google Scholar 

  • Creemers, E.E., Cleutjens, J.P., Smits, J.F., et al., 2001. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ. Res., 89(3): 201–210. http://dx.doi.org/10.1161/hh1501.094396

    Article  CAS  PubMed  Google Scholar 

  • Elhage, R., Jawien, J., Rudling, M., et al., 2003. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc. Res., 59(1): 234–240. http://dx.doi.org/10.1016/S0008-6363(03)00343-2

    Article  CAS  PubMed  Google Scholar 

  • Evans, J., Collins, M., Jennings, C., et al., 2007. The association of interleukin-18 genotype and serum levels with metabolic risk factors for cardiovascular disease. Eur. J. Endocrinol., 157(5): 633–640. http://dx.doi.org/10.1530/EJE-07-0463

    Article  CAS  PubMed  Google Scholar 

  • Finn, A.V., Nakano, M., Narula, J., et al., 2010. Concept of vulnerable/unstable plaque. Arterioscler. Thromb. Vasc. Biol., 30(7): 1282–1292. http://dx.doi.org/10.1161/ATVBAHA.108.179739

    Article  CAS  PubMed  Google Scholar 

  • Gensini, G.G., 1983. A more meaningful scoring system for determining the severity of coronary heart disease. Am. J. Cardiol., 51(3): 606. http://dx.doi.org/10.1016/S0002-9149(83)80105-2

    Article  CAS  PubMed  Google Scholar 

  • Gerdes, N., Sukhova, G.K., Libby, P., et al., 2002. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis. J. Exp. Med., 195(2): 245–257. http://dx.doi.org/10.1084/jem.20011022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goncalves, I., Bengtsson, E., Colhoun, H.M., et al., 2015. Elevated plasma levels of MMP-12 are associated with atherosclerotic burden and symptomatic cardiovascular disease in subjects with type 2 diabetes. Arterioscler. Thromb. Vasc. Biol., 35(7): 1723–1731. http://dx.doi.org/10.1161/ATVBAHA.115.305631

    Article  CAS  PubMed  Google Scholar 

  • Gururajan, R., Grenet, J., Lahti, J.M., et al., 1998. Isolation and characterization of two novel metalloproteinase genes linked to the Cdc2L locus on human chromosome 1p36.3. Genomics, 52(1): 101–106. http://dx.doi.org/10.1006/geno.1998.5401

    Article  CAS  PubMed  Google Scholar 

  • Hansson, G.K., 2005. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med., 352(16): 1685–1695. http://dx.doi.org/10.1056/NEJMra043430

    Article  CAS  PubMed  Google Scholar 

  • Herman, M.P., Sukhova, G.K., Libby, P., et al., 2001. Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma: a novel collagenolytic pathway suggested by transcriptional profiling. Circulation, 104(16): 1899–1904. http://dx.doi.org/10.1161/hc4101.097419

    Article  CAS  PubMed  Google Scholar 

  • Hu, J.H., Touch, P., Zhang, J., et al., 2015. Reduction of mouse atherosclerosis by urokinase inhibition or with a limitedspectrum matrix metalloproteinase inhibitor. Cardiovasc. Res., 105(3): 372–382. http://dx.doi.org/10.1093/cvr/cvv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida, Y., Migita, K., Izumi, Y., et al., 2004. The role of IL-18 in the modulation of matrix metalloproteinases and migration of human natural killer (NK) cells. FEBS Lett., 569(1–3): 156–160. http://dx.doi.org/10.1016/j.febslet.2004.05.039

    Article  CAS  PubMed  Google Scholar 

  • Jefferis, B.J., Papacosta, O., Owen, C.G., et al., 2011. Interleukin 18 and coronary heart disease: prospective study and systematic review. Atherosclerosis, 217(1): 227–233. http://dx.doi.org/10.1016/j.atherosclerosis.2011.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferis, B.J., Whincup, P.H., Welsh, P., et al., 2013. Prospective study of IL-18 and risk of MI and stroke in men and women aged 60–79 years: a nested case-control study. Cytokine, 61(2): 513–520. http://dx.doi.org/10.1016/j.cyto.2012.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, J.L., Devel, L., Czarny, B., et al., 2011. A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice. Arterioscler. Thromb. Vasc. Biol., 31(3): 528–535. http://dx.doi.org/10.1161/ATVBAHA.110.219147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuda, S., Kaji, T., 2003. Atherosclerosis and extracellular matrix. J. Atheroscler. Thromb., 10(5): 267–274. http://dx.doi.org/10.5551/jat.10.267

    Article  CAS  PubMed  Google Scholar 

  • Kuzuya, M., Nakamura, K., Sasaki, T., et al., 2006. Effect of MMP-2 deficiency on atherosclerotic lesion formation in apoE-deficient mice. Arterioscler. Thromb. Vasc. Biol., 26(5): 1120–1125. http://dx.doi.org/10.1161/01.ATV.0000218496.60097.e0

    Article  CAS  PubMed  Google Scholar 

  • Lehrke, M., Greif, M., Broedl, U.C., et al., 2009. MMP-1 serum levels predict coronary atherosclerosis in humans. Cardiovasc. Diabetol., 8: 50. http://dx.doi.org/10.1186/1475-2840-8-50

    Article  PubMed  PubMed Central  Google Scholar 

  • Libby, P., Ridker, P.M., Hansson, G.K., et al., 2009. Inflammation in atherosclerosis: from pathophysiology to practice. J. Am. Coll. Cardiol., 54(23): 2129–2138. http://dx.doi.org/10.1016/j.jacc.2009.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loftus, I.M., Naylor, A.R., Bell, P.R., et al., 2001. Plasma MMP-9—a marker of carotid plaque instability. Eur. J. Vasc. Endovasc. Surg., 21(1): 17–21. http://dx.doi.org/10.1053/ejvs.2000.1278

    Article  CAS  PubMed  Google Scholar 

  • Luttun, A., Lutgens, E., Manderveld, A., et al., 2004. Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth. Circulation, 109(11): 1408–1414. http://dx.doi.org/10.1161/01.CIR.0000121728.14930.DE

    Article  CAS  PubMed  Google Scholar 

  • Ma, Y., Yabluchanskiy, A., Hall, M.E., et al., 2014. Using plasma matrix metalloproteinase-9 and monocyte chemoattractant protein-1 to predict future cardiovascular events in subjects with carotid atherosclerosis. Atherosclerosis, 232(1): 231–233. http://dx.doi.org/10.1016/j.atherosclerosis.2013.09.013

    Article  CAS  PubMed  Google Scholar 

  • Mallat, Z., Corbaz, A., Scoazec, A., et al., 2001. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation, 104(14): 1598–1603. http://dx.doi.org/10.1161/hc3901.096721

    Article  CAS  PubMed  Google Scholar 

  • Mallat, Z., Heymes, C., Corbaz, A., et al., 2004. Evidence for altered interleukin (IL)-18 pathway in human heart failure. FASEB J., 18(14): 1752–1754. http://dx.doi.org/10.1096/fj.04-2426fje

    CAS  PubMed  Google Scholar 

  • Newby, A.C., 2005. Dual role of matrix metalloproteinases (matrixins) in in timal thickening and atherosclerotic plaque rupture. Physiol. Rev., 85(1): 1–31. http://dx.doi.org/10.1152/physrev.00048.2003

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, L., Jonasson, L., Nijm, J., et al., 2006. Increased plasma concentration of matrix metalloproteinase-7 in patients with coronary artery disease. Clin. Chem., 52(8): 1522–1527. http://dx.doi.org/10.1373/clinchem.2006.067439

    Article  CAS  PubMed  Google Scholar 

  • Pagidipati, N.J., Gaziano, T.A., 2013. Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation, 127(6): 749–756. http://dx.doi.org/10.1161/circulationaha.112.128413

    Article  PubMed  PubMed Central  Google Scholar 

  • Quiding-Jarbrink, M., Smith, D.A., Bancroft, G.J., 2001. Production of matrix metalloproteinases in response to mycobacterial infection. Infect. Immun., 69(9): 5661–5670. http://dx.doi.org/10.1128/IAI.69.9.5661-5670.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy, V.S., Prabhu, S.D., Mummidi, S., et al., 2010. Interleukin-18 induces EMMPRIN expression in primary cardiomyocytes via JNK/Sp1 signaling and MMP-9 in part via EMMPRIN and through AP-1 and NF-κB activation. Am. J. Physiol. Heart Circ. Physiol., 299(4): H1242–H1254. http://dx.doi.org/10.1152/ajpheart.00451.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross, R., 1999. Atherosclerosis—an inflammatory disease. N. Engl. J. Med., 340(2): 115–126. http://dx.doi.org/10.1056/NEJM199901143400207

    Article  CAS  PubMed  Google Scholar 

  • Siasos, G., Tousoulis, D., Kioufis, S., et al., 2012. Inflammatory mechanisms in atherosclerosis: the impact of matrix metalloproteinases. Curr. Top Med. Chem., 12(10): 1132–1148. http://dx.doi.org/10.2174/1568026611208011132

    Article  CAS  PubMed  Google Scholar 

  • Task Force, M., Montalescot, G., Sechtem, U., et al., 2013. 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur. Heart J., 34(38): 2949–3003. http://dx.doi.org/10.1093/eurheartj/eht296

    Article  Google Scholar 

  • Tenger, C., Sundborger, A., Jawien, J., et al., 2005. IL-18 accelerates atherosclerosis accompanied by elevation of IFN-γ and CXCL16 expression independently of T cells. Arterioscler. Thromb. Vasc. Biol., 25(4): 791–796. http://dx.doi.org/10.1161/01.ATV.0000153516.02782.65

    Article  CAS  PubMed  Google Scholar 

  • Thygesen, K., Alpert, J.S., Jaffe, A.S., et al., 2012. Third universal definition of myocardial infarction. J. Am. Coll. Cardiol., 60(16): 1581–1598. http://dx.doi.org/10.1016/j.jacc.2012.08.001

    Article  PubMed  Google Scholar 

  • Wang, J., Sun, C., Gerdes, N., et al., 2015. Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter. Nat. Med., 21(7): 820–826. http://dx.doi.org/10.1038/nm.3890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, S., Chen, J., Feder, J., et al., 2007. Metalloprotease Highly Expressed in the Testis, MMP-29. US Patent 7285633.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Ping Shi or Jin-Ying Zhang.

Additional information

Project supported by the University of Science and Technology Innovation Team of Henan (No. 14IRTSTHN018), the Science and Technology Talents Team Construction Program of Zhengzhou City-Science and Technology Talents (No. 131PLJRC670), China, and the National Institutes of Health (Nos. HL60942 and HL123568), USA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, DY., Liu, CL., Tang, JN. et al. Interleukin-18, matrix metalloproteinase-22 and -29 are independent risk factors of human coronary heart disease. J. Zhejiang Univ. Sci. B 18, 685–695 (2017). https://doi.org/10.1631/jzus.B1700073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1700073

Key words

关键词

CLC number

Navigation