Skip to main content

Advertisement

Log in

Mesenchymal stem cells as therapeutic agents and in gene delivery for the treatment of glioma

间充质干细胞在胶质瘤治疗中的作用研究

  • Review
  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are plastic-adherent cells with a characteristic surface phenotype and properties of self-renewal, differentiation, and high proliferative potential. The characteristics of MSCs and their tumortropic capability make them an ideal tool for use in cell-based therapies for cancer, including glioma. These cells can function either through a bystander effect or as a delivery system for genes and drugs. MSCs have been demonstrated to inhibit the growth of glioma and to improve survival following transplantation into the brain. We briefly review the current data regarding the use of MSCs in the treatment of glioma and discuss the potential strategies for development of a more specific and effective therapy.

中文概要

胶质瘤是颅内发病率最高的恶性肿瘤,虽然临床 上可以用“手术+化疗”的方法进行治疗,但由 于其浸润性,对化疗药物的低敏感性等原因,常 在治疗后复发,严重威胁人类生命健康。间充质 干细胞(MSC)是干细胞中的一员,具有增殖能 力强、分化潜能大、免疫原性低及采集方便等优 点,其趋化性更使MSC 成为肿瘤治疗的一个理 想工具。本文对干细胞治疗胶质瘤的研究现状进 行了归纳总结,着重阐述了MSC 的旁分泌途径 作用及作为基因载体导入肿瘤坏死因子相关凋 亡诱导配体(TRAIL)、溶瘤病毒等其他治疗基 因的生物功能,以期对进一步的治疗研究提供帮 助。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimoto, K., Kimura, K., Nagano, M., et al., 2013. Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev., 22(9):1370–1386. http://dx.doi.org/10.1089/scd.2012.0486

    Article  CAS  PubMed  Google Scholar 

  • Amano, S., Li, S., Gu, C., et al., 2009. Use of genetically engineered bone marrow-derived mesenchymal stem cells for glioma gene therapy. Int. J. Oncol., 35(6): 1265–1270. http://dx.doi.org/10.3892/ijo_00000443

    CAS  PubMed  Google Scholar 

  • Bak, X.Y., Lam, D.H., Yang, J., et al., 2011. Human embryonic stem cell-derived mesenchymal stem cells as cellular delivery vehicles for prodrug gene therapy of glioblastoma. Hum. Gene Ther., 22(11):1365–1377. http://dx.doi.org/10.1089/hum.2010.212

    Article  CAS  PubMed  Google Scholar 

  • Bexell, D., Gunnarsson, S., Tormin, A., et al., 2009. Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol. Ther., 17(1):183–190. http://dx.doi.org/10.1038/mt.2008.229

    Article  CAS  PubMed  Google Scholar 

  • Bexell, D., Gunnarsson, S., Svensson, A., et al., 2012. Rat multipotent mesenchymal stromal cells lack long-distance tropism to 3 different rat glioma models. Neurosurgery, 70(3):731–739. http://dx.doi.org/10.1227/NEU.0b013e318232dedd

    Article  PubMed  Google Scholar 

  • Castro, M.G., Cowen, R., Williamson, I.K., et al., 2003. Current and future strategies for the treatment of malignant brain tumors. Pharmacol. Ther., 98(1):71–108. http://dx.doi.org/10.1016/S0163-7258(03)00014-7

    Article  CAS  PubMed  Google Scholar 

  • Cavarretta, I.T., Altanerova, V., Matuskova, M., et al., 2010. Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol. Ther., 18(1):223–231. http://dx.doi.org/10.1038/mt.2009.237

    Article  CAS  PubMed  Google Scholar 

  • Chang, D.Y., Yoo, S.W., Hong, Y., et al., 2010. The growth of brain tumors can be suppressed by multiple transplantation of mesenchymal stem cells expressing cytosine deaminase. Int. J. Cancer, 127(8):1975–1983. http://dx.doi.org/10.1002/ijc.25383

    Article  CAS  PubMed  Google Scholar 

  • Choi, S.A., Hwang, S.K., Wang, K.C., et al., 2011. Therapeutic efficacy and safety of TRAIL-producing human adipose tissue-derived mesenchymal stem cells against experimental brainstem glioma. Neuro Oncol., 13(1):61–69. http://dx.doi.org/10.1093/neuonc/noq147

    Article  CAS  PubMed  Google Scholar 

  • Choi, S.A., Lee, J.Y., Wang, K.C., et al., 2012. Human adipose tissue-derived mesenchymal stem cells: characteristics and therapeutic potential as cellular vehicles for prodrug gene therapy against brainstem gliomas. Eur. J. Cancer, 48(1):129–137. http://dx.doi.org/10.1016/j.ejca.2011.04.033

    Article  CAS  PubMed  Google Scholar 

  • Choi, S.H., Tamura, K., Khajuria, R.K., et al., 2015. Antiangiogenic variant of TSP-1 targets tumor cells in glioblastomas. Mol. Ther., 23(2):235–243. http://dx.doi.org/10.1038/mt.2014.214

    Article  CAS  PubMed  Google Scholar 

  • Coffelt, S.B., Marini, F.C., Watson, K., et al., 2009. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc. Natl. Acad. Sci. USA, 106(10):3806–3811. http://dx.doi.org/10.1073/pnas.0900244106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croce, C.M., 2009. Causes and consequences of microrna dysregulation in cancer. Nat. Rev. Cancer, 10(10):704–714. http://dx.doi.org/10.1038/nrg2634

    Article  CAS  Google Scholar 

  • Danks, M.K., Yoon, K.J., Bush, R.A., et al., 2007. Tumortargeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated neuroblastoma. Cancer Res., 67(1):22–25. http://dx.doi.org/10.1158/0008-5472.CAN-06-3607

    Article  CAS  PubMed  Google Scholar 

  • Dasari, V.R., Kaur, K., Velpula, K.K., et al., 2010. Upregulation of PTEN in glioma cells by cord blood mesenchymal stem cells inhibits migration via downregulation of the PI3K/Akt pathway. PLoS ONE, 5(4):e10350. http://dx.doi.org/10.1371/journal.pone.0010350

    Article  PubMed  PubMed Central  Google Scholar 

  • Deangelis, L.M., 2001. Brain tumors. N. Engl. J. Med., 344(2): 114–123. http://dx.doi.org/10.1056/NEJM200101113440207

    Article  CAS  PubMed  Google Scholar 

  • del Fattore, A., Luciano, R., Saracino, R., et al., 2015. Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells. Expert Opin. Biol. Ther., 15(4):495–504. http://dx.doi.org/10.1517/14712598.2015.997706

    Article  PubMed  Google Scholar 

  • de Melo, S.M., Bittencourt, S., Ferrazoli, E.G., et al., 2015. The anti-tumor effects of adipose tissue mesenchymal stem cell transduced with HSV-Tk gene on U-87-driven brain tumor. PLoS ONE, 10(6):e0128922. http://dx.doi.org/10.1371/journal.pone.0128922

    Article  PubMed  PubMed Central  Google Scholar 

  • Djouad, F., Plence, P., Bony, C., et al., 2003. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102(10):3837–3844. http://dx.doi.org/10.1182/blood-2003-04-1193

    Article  CAS  PubMed  Google Scholar 

  • Dominici, M., le Blanc, K., Mueller, I., et al., 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8(4):315–317. http://dx.doi.org/10.1080/14653240600855905

    CAS  PubMed  Google Scholar 

  • Ferguson, M.S., Lemoine, N.R., Wang, Y., 2012. Systemic delivery of oncolytic viruses: hopes and hurdles. Adv. Virol., 2012:805629. http://dx.doi.org/10.1155/2012/805629

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedenstein, A.J., Chailakhjan, R.K., Lalykina, K.S., 1970. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Proliferat., 3(4):393–403. http://dx.doi.org/10.1111/j.1365-2184.1970.tb00347.x

    Article  CAS  Google Scholar 

  • Friedenstein, A.J., Deriglasova, U.F., Kulagina, N.N., et al., 1974. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp. Hematol., 2(2):83–92.

    CAS  PubMed  Google Scholar 

  • Gao, Y., Gu, C., Li, S., et al., 2010. P27 modulates tropism of mesenchymal stem cells toward brain tumors. Exp. Ther. Med., 1(4):695–699. http://dx.doi.org/10.3892/etm_00000107

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunnarsson, S., Bexell, D., Svensson, A., et al., 2010. Intratumoral IL-7 delivery by mesenchymal stromal cells potentiates IFNγ-transduced tumor cell immunotherapy of experimental glioma. J. Neuroimmunol., 218(1-2):140–144. http://dx.doi.org/10.1016/j.jneuroim.2009.10.017

    Article  CAS  PubMed  Google Scholar 

  • Harting, M.T., Jimenez, F., Xue, H., et al., 2009. Intravenous mesenchymal stem cell therapy for traumatic brain injury. J. Neurosurg., 110(6):1189–1197. http://dx.doi.org/10.3171/2008.9.JNS08158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho, I.A., Chan, K.Y., Ng, W.H., et al., 2009. Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells, 27(6):1366–1375. http://dx.doi.org/10.1002/stem.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho, I.A., Toh, H.C., Ng, W.H., et al., 2013. Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells, 31(1):146–155. http://dx.doi.org/10.1002/stem.1247

    Article  CAS  PubMed  Google Scholar 

  • Hong, X., Miller, C., Savant-Bhonsale, S., et al., 2009. Antitumor treatment using interleukin-12-secreting marrow stromal cells in an invasive glioma model. Neurosurgery, 64(6):1139–1146. http://dx.doi.org/10.1227/01.NEU.0000345646.85472.EA

    Article  PubMed  Google Scholar 

  • Hu, G., Drescher, K.M., Chen, X.M., 2012. Exosomal miRNAs: biological properties and therapeutic potential. Front. Genet., 3:56. http://dx.doi.org/10.3389/fgene.2012.00056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ichikawa, T., Tamiya, T., Adachi, Y., et al., 2000. In vivo efficacy and toxicity of 5-fluorocytosine/cytosine deaminase gene therapy for malignant gliomas mediated by adenovirus. Cancer Gene Ther., 7(1):74–82. http://dx.doi.org/10.1038/sj.cgt.7700086

    Article  CAS  PubMed  Google Scholar 

  • Jiao, H., Guan, F., Yang, B., et al., 2011. Human umbilical cord blood-derived mesenchymal stem cells inhibit C6 glioma via downregulation of cyclin D1. Neurol. India, 59(2):241–247. http://dx.doi.org/10.4103/0028-3886.79134

    Article  PubMed  Google Scholar 

  • Johnson, D.R., Leeper, H.E., Uhm, J.H., 2013. Glioblastoma survival in the united states improved after food and drug administration approval of bevacizumab: a populationbased analysis. Cancer, 119(19):3489–3495. http://dx.doi.org/10.1002/cncr.28259

    Article  CAS  PubMed  Google Scholar 

  • Karnoub, A.E., Dash, A.B., Vo, A.P., et al., 2007. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162):557–563. http://dx.doi.org/10.1038/nature06188

    Article  CAS  PubMed  Google Scholar 

  • Katakowski, M., Buller, B., Zheng, X., et al., 2013. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett., 335(1):201–204. http://dx.doi.org/10.1016/j.canlet.2013.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keles, G.E., Berger, M.S., 2004. Advances in neurosurgical technique in the current management of brain tumors. Semin. Oncol., 31(5):659–665. http://dx.doi.org/10.1053/j.seminoncol.2004.07.008

    Article  PubMed  Google Scholar 

  • Kim, D.S., Kim, J.H., Lee, J.K., et al., 2009. Overexpression of CXC chemokine receptors is required for the superior glioma-tracking property of umbilical cord blood-derived mesenchymal stem cells. Stem Cells Dev., 18(3):511–519. http://dx.doi.org/10.1089/scd.2008.0050

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.M., Oh, J.H., Park, S.A., et al., 2010. Irradiation enhances the tumor tropism and therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligandsecreting human umbilical cord blood-derived mesenchymal stem cells in glioma therapy. Stem Cells, 28(12): 2217–2228. http://dx.doi.org/10.1002/stem.543

    Article  PubMed  Google Scholar 

  • Kim, S.M., Kim, D.S., Jeong, C.H., et al., 2011. CXC chemokine receptor 1 enhances the ability of human umbilical cord blood-derived mesenchymal stem cells to migrate toward gliomas. Biochem. Biophys. Res. Commun., 407(4):741–746. http://dx.doi.org/10.1016/j.bbrc.2011.03.093

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.M., Woo, J.S., Jeong, C.H., et al., 2012. Effective combination therapy for malignant glioma with TRAILsecreting mesenchymal stem cells and lipoxygenase inhibitor MK886. Cancer Res., 72(18):4807–4817. http://dx.doi.org/10.1158/0008-5472.CAN-12-0123

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.M., Woo, J.S., Jeong, C.H., et al., 2014. Potential application of temozolomide in mesenchymal stem cell-based TRAIL gene therapy against malignant glioma. Stem Cells Transl. Med., 3(2):172–182. http://dx.doi.org/10.5966/sctm.2013-0132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S.M., Jeong, C.H., Woo, J.S., et al., 2016. In vivo near-infrared imaging for the tracking of systemically delivered mesenchymal stem cells: tropism for brain tumors and biodistribution. Int. J. Nanomed., 11:13–23. http://dx.doi.org/10.2147/IJN.S97073

    CAS  Google Scholar 

  • Kinoshita, Y., Kamitani, H., Mamun, M.H., et al., 2010. A gene delivery system with a human artificial chromosome vector based on migration of mesenchymal stem cells towards human glioblastoma HTB14 cells. Neurol. Res., 32(4):429–437. http://dx.doi.org/10.1179/174313209X455718

    Article  PubMed  Google Scholar 

  • Kolosa, K., Motaln, H., Herold-Mende, C., et al., 2015. Paracrine effects of mesenchymal stem cells induce senescence and differentiation of glioblastoma stem-like cells. Cell Transplant., 24(4):631–644. http://dx.doi.org/10.3727/096368915X687787

    Article  PubMed  Google Scholar 

  • Komarova, S., Kawakami, Y., Stoff-Khalili, M.A., et al., 2006. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol. Cancer Ther., 5(3):755–766. http://dx.doi.org/10.1158/1535-7163.MCT-05-0334

    Article  CAS  PubMed  Google Scholar 

  • Kosaka, H., Ichikawa, T., Kurozumi, K., et al., 2012. Therapeutic effect of suicide gene-transferred mesenchymal stem cells in a rat model of glioma. Cancer Gene Ther., 19(8):572–578. http://dx.doi.org/10.1038/cgt.2012.35

    Article  CAS  PubMed  Google Scholar 

  • Kucerova, L., Altanerova, V., Matuskova, M., et al., 2007. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res., 67(13):6304–6313. http://dx.doi.org/10.1158/0008-5472.CAN-06-4024

    Article  CAS  PubMed  Google Scholar 

  • Kucerova, L., Matuskova, M., Pastorakova, A., et al., 2008. Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J. Gene Med., 10(10):1071–1082. http://dx.doi.org/10.1002/jgm.1239

    Article  CAS  PubMed  Google Scholar 

  • Lee, D.H., Ahn, Y., Kim, S.U., et al., 2009. Targeting rat brainstem glioma using human neural stem cells and human mesenchymal stem cells. Clin. Cancer Res., 15(15):4925–4934. http://dx.doi.org/10.1158/1078-0432.CCR-08-3076

    Article  CAS  PubMed  Google Scholar 

  • Lefranc, F., Brotchi, J., Kiss, R., 2005. Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J. Clin. Oncol., 23(10):2411–2422. http://dx.doi.org/10.1200/JCO.2005.03.089

    Article  CAS  PubMed  Google Scholar 

  • Lichty, B.D., Breitbach, C.J., Stojdl, D.F., et al., 2014. Going viral with cancer immunotherapy. Nat. Rev. Cancer, 14(8):559–567. http://dx.doi.org/10.1038/nrc3770

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Quintanilla, J., He, D., Wakimoto, H., et al., 2015. Encapsulated stem cells loaded with hyaluronidaseexpressing oncolytic virus for brain tumor therapy. Mol. Ther., 23(1):108–118. http://dx.doi.org/10.1038/mt.2014.204

    Article  CAS  PubMed  Google Scholar 

  • Matuskova, M., Hlubinova, K., Pastorakova, A., et al., 2010. HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett., 290(1):58–67. http://dx.doi.org/10.1016/j.canlet.2009.08.028

    Article  CAS  PubMed  Google Scholar 

  • McCulloch, E.A., Parker, R.C., 1957. Continuous cultivation of cells of hemic origin. Proc. Can. Cancer Conf., 2:152–167.

    CAS  PubMed  Google Scholar 

  • Miletic, H., Fischer, Y., Litwak, S., et al., 2007. Bystander killing of malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene. Mol. Ther., 15(7):1373–1381. http://dx.doi.org/10.1038/sj.mt.6300155

    Article  CAS  PubMed  Google Scholar 

  • Motaln, H., Gruden, K., Hren, M., et al., 2012. Human mesenchymal stem cells exploit the immune response mediating chemokines to impact the phenotype of glioblastoma. Cell Transplant., 21(7):1529–1545. http://dx.doi.org/10.3727/096368912X640547

    Article  PubMed  Google Scholar 

  • Nagano, M., Kimura, K., Yamashita, T., et al., 2010. Hypoxia responsive mesenchymal stem cells derived from human umbilical cord blood are effective for bone repair. Stem Cells Dev., 19(8):1195–1210. http://dx.doi.org/10.1089/scd.2009.0447

    Article  CAS  PubMed  Google Scholar 

  • Nakamizo, A., Marini, F., Amano, T., et al., 2005. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res., 65(8):3307–3318. http://dx.doi.org/10.1158/0008-5472.CAN-04-1874

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, K., Ito, Y., Kawano, Y., et al., 2004. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther., 11(14):1155–1164. http://dx.doi.org/10.1038/sj.gt.3302276

    Article  CAS  PubMed  Google Scholar 

  • Otsu, K., Das, S., Houser, S.D., et al., 2009. Concentrationdependent inhibition of angiogenesis by mesenchymal stem cells. Blood, 113(18):4197–4205. http://dx.doi.org/10.1182/blood-2008-09-176198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen, M., Friedenstein, A.J., 1988. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp., 136:42–60.

    CAS  PubMed  Google Scholar 

  • Park, J.H., Ryu, C.H., Kim, M.J., et al., 2015. Combination therapy for gliomas using temozolomide and interferonbeta secreting human bone marrow derived mesenchymal stem cells. J. Korean Neurosurg. Soc., 57(5):323–328. http://dx.doi.org/10.3340/jkns.2015.57.5.323

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker, J.N., Bauer, D.F., Cody, J.J., et al., 2009. Oncolytic viral therapy of malignant glioma. Neurotherapeutics, 6(3):558–569. http://dx.doi.org/10.1016/j.nurt.2009.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parolini, O., Alviano, F., Bagnara, G.P., et al., 2008. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells, 26(2):300–311. http://dx.doi.org/10.1634/stemcells.2007-0594

    Article  PubMed  Google Scholar 

  • Pillat, M.M., Oliveira, M.N., Motaln, H., et al., 2016. Glioblastoma-mesenchymal stem cell communication modulates expression patterns of kinin receptors: possible involvement of bradykinin in information flow. Cytom. Part A, 89(4):365–375. http://dx.doi.org/10.1002/cyto.a.22800

    Article  CAS  Google Scholar 

  • Prockop, D.J., 2009. Repair of tissues by adult stem/progenitor cells (MSCS): controversies, myths, and changing paradigms. Mol. Ther., 17(6):939–946. http://dx.doi.org/10.1038/mt.2009.62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulkkanen, K.J., Yla-Herttuala, S., 2005. Gene therapy for malignant glioma: current clinical status. Mol. Ther., 12(4):585–598. http://dx.doi.org/10.1016/j.ymthe.2005.07.357

    Article  CAS  PubMed  Google Scholar 

  • Ryu, C.H., Park, S.H., Park, S.A., et al., 2011. Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord blood-derived mesenchymal stem cells. Hum. Gene Ther., 22(6):733–743. http://dx.doi.org/10.1089/hum.2010.187

    Article  CAS  PubMed  Google Scholar 

  • Sato, H., Kuwashima, N., Sakaida, T., et al., 2005. Epidermal growth factor receptor-transfected bone marrow stromal cells exhibit enhanced migratory response and therapeutic potential against murine brain tumors. Cancer Gene Ther., 12(9):757–768. http://dx.doi.org/10.1038/sj.cgt.7700827

    Article  CAS  PubMed  Google Scholar 

  • Schichor, C., Birnbaum, T., Etminan, N., et al., 2006. Vascular endothelial growth factor a contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp. Neurol., 199(2):301–310. http://dx.doi.org/10.1016/j.expneurol.2005.11.027

    Article  CAS  PubMed  Google Scholar 

  • Secchiero, P., Zorzet, S., Tripodo, C., et al., 2010. Human bone marrow mesenchymal stem cells display anti-cancer activity in scid mice bearing disseminated non-hodgkin’s lymphoma xenografts. PLoS ONE, 5(6):e11140. http://dx.doi.org/10.1371/journal.pone.0011140

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, C.L., Chaichana, K.L., Lee, Y.M., et al., 2015. Pre-exposure of human adipose mesenchymal stem cells to soluble factors enhances their homing to brain cancer. Stem Cells Transl. Med., 4(3):239–251. http://dx.doi.org/10.5966/sctm.2014-0149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, F., Xing, Q., Song, K.D., et al., 2012. The antitumor effect of mesenchymal stem cells transduced with a lentiviral vector expressing cytosine deaminase in a rat glioma model. J. Cancer Res. Clin. Oncol., 138(2):347–357. http://dx.doi.org/10.1007/s00432-011-1104-z

    Article  CAS  Google Scholar 

  • Strojby, S., Eberstal, S., Svensson, A., et al., 2014. Intratumorally implanted mesenchymal stromal cells potentiate peripheral immunotherapy against malignant rat gliomas. J. Neuroimmunol., 274(1-2):240–243. http://dx.doi.org/10.1016/j.jneuroim.2014.07.014

    Article  PubMed  Google Scholar 

  • Studeny, M., Marini, F.C., Champlin, R.E., et al., 2002. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res., 62(13): 3603–3608.

    CAS  PubMed  Google Scholar 

  • Surawicz, T.S., Davis, F., Freels, S., et al., 1998. Brain tumor survival: results from the national cancer data base. J. Neurooncol., 40(2):151–160. http://dx.doi.org/10.1023/A:1006091608586

    Article  CAS  PubMed  Google Scholar 

  • Tang, X.J., Lu, J.T., Tu, H.J., et al., 2014. TRAIL-engineered bone marrow-derived mesenchymal stem cells: TRAIL expression and cytotoxic effects on C6 glioma cells. Anticancer Res., 34(2):729–734.

    CAS  PubMed  Google Scholar 

  • Uchibori, R., Okada, T., Ito, T., et al., 2009. Retroviral vector-producing mesenchymal stem cells for targeted suicide cancer gene therapy. J. Gene Med., 11(5):373–381. http://dx.doi.org/10.1002/jgm.1313

    Article  CAS  PubMed  Google Scholar 

  • Wierdl, M., Morton, C.L., Weeks, J.K., et al., 2001. Sensitization of human tumor cells to CPT-11 via adenoviralmediated delivery of a rabbit liver carboxylesterase. Cancer Res., 61(13):5078–5082.

    CAS  PubMed  Google Scholar 

  • Wiley, S.R., Schooley, K., Smolak, P.J., et al., 1995. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity, 3(6): 673–682. http://dx.doi.org/10.1016/1074-7613(95)90057-8

    Article  CAS  PubMed  Google Scholar 

  • Wu, G.S., 2009. TRAIL as a target in anti-cancer therapy. Cancer Lett., 285(1):1–5. http://dx.doi.org/10.1016/j.canlet.2009.02.029

    Article  CAS  PubMed  Google Scholar 

  • Xu, F., Shi, J., Yu, B., et al., 2010. Chemokines mediate mesenchymal stem cell migration toward gliomas in vitro. Oncol. Rep., 23(6):1561–1567. http://dx.doi.org/10.3892/or_00000796

    CAS  PubMed  Google Scholar 

  • Xu, G., Jiang, X.D., Xu, Y., et al., 2009. Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats. Cell Biol. Int., 33(4):466–474. http://dx.doi.org/10.1016/j.cellbi.2008.07.023

    Article  CAS  PubMed  Google Scholar 

  • Yang, C., Lei, D., Ouyang, W., et al., 2014. Conditioned media from human adipose tissue-derived mesenchymal stem cells and umbilical cord-derived mesenchymal stem cells efficiently induced the apoptosis and differentiation in human glioma cell lines in vitro. Biomed. Res. Int., 2014:109389. http://dx.doi.org/10.1155/2014/109389

    PubMed  PubMed Central  Google Scholar 

  • Yong, R.L., Shinojima, N., Fueyo, J., et al., 2009. Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Δ24-RGD to human gliomas. Cancer Res., 69(23):8932–8940. http://dx.doi.org/10.1158/0008-5472.CAN-08-3873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yulyana, Y., Endaya, B.B., Ng, W.H., et al., 2013. Carbenoxolone enhances TRAIL-induced apoptosis through the upregulation of death receptor 5 and inhibition of gap junction intercellular communication in human glioma. Stem Cells Dev., 22(13):1870–1882. http://dx.doi.org/10.1089/scd.2012.0529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zischek, C., Niess, H., Ischenko, I., et al., 2009. Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann. Surg., 250(5):747–753. http://dx.doi.org/10.1097/SLA.0b013e3181bd62d0

    Article  PubMed  Google Scholar 

  • Zuk, P.A., Zhu, M., Mizuno, H., et al., 2001. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng., 7(2):211–228. http://dx.doi.org/10.1089/107632701300062859

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlie Xiang.

Additional information

Project supported by the National High-Tech R&D Program (863) of China (No. 2015AA020306)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, By., Chen, L., Wang, Xj. et al. Mesenchymal stem cells as therapeutic agents and in gene delivery for the treatment of glioma. J. Zhejiang Univ. Sci. B 18, 737–746 (2017). https://doi.org/10.1631/jzus.B1600337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600337

Keywords

CLC number

关键词

Navigation