Skip to main content

Advertisement

Log in

Porcine circovirus type 2 capsid protein induces unfolded protein response with subsequent activation of apoptosis

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Porcine circovirus type 2 (PCV2) has recently been reported to elicit the unfolded protein response (UPR) via activation of the PERK/eIF2α (RNA-activated protein kinase-like endoplasmic reticulum (ER) kinase/eukaryotic initiation factor 2α) pathway. This study attempted to examine which viral protein might be involved in inducing UPR and whether this cellular event would lead to apoptosis of the cells expressing the viral protein. By transient expression, we found that both replicase (Rep) and capsid (Cap) proteins of PCV2 could induce ER stress as shown by increased phosphorylation of PERK with subsequent activation of the eIF2α-ATF4 (activating transcription factor 4)-CHOP (CCAAT/enhancer-binding protein homologous protein) axis. Cap expression, but not Rep, significantly reduced antiapoptotic B-cell lymphoma-2 (Bcl-2) and increased caspase-3 cleavage, possibly due to increased expression of CHOP. Since knockdown of PERK by RNA interference clearly reduced Cap-induced CHOP expression, caspase-3 cleavage, and apoptotic cell death possibly by partially rescuing Bcl-2 expression, we propose that there is connection between Cap-induced UPR and apoptosis via the PERK/eIF2α/ATF4/CHOP/Bcl-2 pathway. This study, together with our earlier studies, provides insight into the mechanisms underlying PCV2 pathogenesis.

中文概要

题目

猪圆环病毒2 型衣壳蛋白通过未折叠蛋白反应诱导凋亡

目的

确定猪圆环病毒2 型衣壳蛋白(PCV2)感染引起 未折叠蛋白反应的关键病毒蛋白,以及探究 PCV2 感染中未折叠蛋白反应与凋亡之间的联 系。

创新点

本文首次鉴定出PCV2 感染引起未折叠蛋白反应 的关键病毒蛋白。

方法

构建表达病毒蛋白的真核表达载体,通过瞬时转 染PK-15 细胞,采用免疫印迹检测未折叠蛋白反 应通路的关键分子;利用RNA 干扰抑制perk 基 因的表达来验证激活的通路;通过抑制内质网上 游分子PERK 并利用免疫印迹和流式细胞术检测 凋亡,研究内质网应激与凋亡之间的联系。

结论

PCV2 Rep 和Cap 蛋白能激活PERK-eIF2α-ATF4-CHOP 通路,PERK 通路在Cap 诱导的细胞凋亡中起重要作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrose, R.L., Mackenzie, J.M., 2011. West Nile virus differentially modulates the unfolded protein response to facilitate replication and immune evasion. J. Virol., 85(6): 2723–2732. http://dx.doi.org/10.1128/JVI.02050-10

    Article  CAS  PubMed  Google Scholar 

  • Ambrose, R.L., Mackenzie, J.M., 2013. ATF6 signaling is required for efficient West Nile virus replication by promoting cell survival and inhibition of innate immune responses. J. Virol., 87(4): 2206–2214. http://dx.doi.org/10.1128/JVI.02097-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benali-Furet, N.L., Chami, M., Houel, L., et al., 2005. Hepatitis C virus core triggers apoptosis in liver cells by inducing ERstress and ERcalcium depletion. Oncogene, 24(31): 4921–4933. http://dx.doi.org/10.1038/sj.onc.1208673

    Article  CAS  PubMed  Google Scholar 

  • Chan, S.W., Egan, P.A., 2005. Hepatitis C virus envelope proteins regulate CHOP via induction of the unfolded protein response. FASEB J., 19(11): 1510–1512. http://dx.doi.org/10.1096/fj.04-3455fje

    CAS  PubMed  Google Scholar 

  • Dey, S., Savant, S., Teske, B.F., et al., 2012. Transcriptional repreßsion of ATF4 gene by CCAAT/enhancer-binding protein ß (C/EBPß) differentially regulates integrated stress response. J. Biol. Chem., 287(26): 21936–21949. http://dx.doi.org/10.1074/jbc.M112.351783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finsterbusch, T., Mankertz, A., 2009. Porcine circoviruses— small but powerful. Virus Res., 143(2): 177–183. http://dx.doi.org/10.1016/j.virusres.2009.02.009

    Article  CAS  PubMed  Google Scholar 

  • Gilpin, D.F., McCullough, K., Meehan, B.M., et al., 2003. In vitro studies on the infection and replication of porcine circovirus type 2 in cells of the porcine immune system. Vet. Immunol. Immunopathol., 94(3-4):149–161. http://dx.doi.org/10.1016/S0165-2427(03)00087-4

    Article  CAS  PubMed  Google Scholar 

  • Gu, Y., Qi, B., Zhou, Y., et al., 2016. Porcine circovirus type 2 activates CaMMKß to initiate autophagy in PK-15 cells by increasing cytosolic calcium. Viruses, 8(5): 135. http://dx.doi.org/10.3390/v8050135

    Article  PubMed Central  Google Scholar 

  • He, J., Cao, J., Zhou, N., et al., 2013. Identification and functional analysis of the novel ORF4 protein encoded by porcine circovirus type 2. J. Virol., 87(3): 1420–1429. http://dx.doi.org/10.1128/JVI.01443-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetz, C., 2012. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol., 13(2): 89–102. http://dx.doi.org/10.1038/nrm3270

    CAS  PubMed  Google Scholar 

  • Isler, J.A., Skalet, A.H., Alwine, J.C., 2005. Human cytomegalovirus infection activates and regulates the unfolded protein response. J. Virol., 79(11): 6890–6899. http://dx.doi.org/10.1128/JVI.79.11.6890-6899.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, B., Gao, B., Ye, L., et al., 2007. Hepatitis B virus X protein (HBx) activates ATF6 and IRE1-XBP1 pathways of unfolded protein response. Virus Res., 124(1-2):44–49. http://dx.doi.org/10.1016/j.virusres.2006.09.011

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Kong, L., Yu, X., 2015. The expanding roles of endoplasmic reticulum stress in virus replication and pathogenesis. Crit. Rev. Microbiol., 41(2): 150–164. http://dx.doi.org/10.3109/1040841X.2013.813899

    Article  PubMed  Google Scholar 

  • Liao, Y., Fung, T.S., Huang, M., et al., 2013. Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway. J. Virol., 87(14): 8124–8134. http://dx.doi.org/10.1128/JVI.00626-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Chen, I., Kwang, J., 2005. Characterization of a previously unidentified viral protein in porcine circovirus type 2-infected cells and its role in virus-induced apoptosis. J. Virol., 79(13): 8262–8274. http://dx.doi.org/10.1128/JVI.79.13.8262-8274.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Chen, I., Du, Q., et al., 2006. The ORF3 protein of porcine circovirus type 2 is involved in viral pathogenesis in vivo. J. Virol., 80(10): 5065–5073. http://dx.doi.org/10.1128/JVI.80.10.5065-5073.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Q., Tikoo, S.K., Babiuk, L.A., 2001. Nuclear localization of the ORF2 protein encoded by porcine circovirus type 2. Virology, 285(1): 91–99. http://dx.doi.org/10.1006/viro.2001.0922

    Article  CAS  PubMed  Google Scholar 

  • Lv, Q., Guo, K., Xu, H., et al., 2015. Identification of putative ORF5 protein of porcine circovirus type 2 and functional analysis of GFP-fused ORF5 protein. PLoS ONE, 10(6): e0127859. http://dx.doi.org/10.1371/journal.pone.0127859

  • Mankertz, A., Mankertz, J., Wolf, K., et al., 1998. Identification of a protein essential for replication of porcine circovirus. J. Gen. Virol., 79(Pt 2):381-384. http://dx.doi.org/10.1099/0022-1317-79-2-381

  • Meng, X.J., 2013. Porcine circovirus type 2 (PCV2): pathogenesis and interaction with the immune system. Annu. Rev. Anim. Biosci., 1(1): 43–64. http://dx.doi.org/10.1146/annurev-animal-031412-103720

    Article  PubMed  Google Scholar 

  • Moreno, J.A., Radford, H., Peretti, D., et al., 2012. Sustained translational repression by eIF2a-P mediates prion neurodegeneration. Nature, 485(7399): 507–511. http://dx.doi.org/10.1038/nature11058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nawagitgul, P., Morozov, I., Bolin, S.R., et al., 2000. Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J. Gen. Virol., 81(Pt 9):2281-2287. http://dx.doi.org/10.1099/0022-1317-81-9-2281

  • Oyadomari, S., Mori, M., 2004. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ., 11(4): 381–389. http://dx.doi.org/10.1038/sj.cdd.4401373

    Article  CAS  PubMed  Google Scholar 

  • Palam, L.R., Baird, T.D., Wek, R.C., 2011. Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J. Biol. Chem., 286(13): 10939–10949. http://dx.doi.org/10.1074/jbc.M110.216093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberson, E.C., Tully, J.E., Guala, A.S., et al., 2012. Influenza induces endoplasmic reticulum streßs, caspase-12-dependent apoptosis, and c-Jun N-terminal kinasemediated transforming growth factor-ß release in lung epithelial cells. Am. J. Resp. Cell Mol., 46(5): 573–581. http://dx.doi.org/10.1165/rcmb.2010-0460OC

    Article  CAS  Google Scholar 

  • Su, H.L., Liao, C.L., Lin, Y.L., 2002. Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response. J. Virol., 76(9): 4162–4171. http://dx.doi.org/10.1128/JVI.76.9.4162-4171.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabas, I., Ron, D., 2011. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol., 13(3): 184–190. http://dx.doi.org/10.1038/ncb0311-184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk, S., Fossum, C., Berg, M., 2006. Porcine circovirus type 2 replicase binds the capsid protein and an intermediate filament-like protein. J. Gen. Virol., 87(Pt 11):3215–3223. http://dx.doi.org/10.1099/vir.0.81785-0

    Article  CAS  PubMed  Google Scholar 

  • Walia, R., Dardari, R., Chaiyakul, M., et al., 2014. Porcine circovirus-2 capsid protein induces cell death in PK15 cells. Virology, 468-470:126-132. http://dx.doi.org/10.1016/j.virol.2014.07.051

  • Zhou, Y., Qi, B., Gu, Y., et al., 2016. Porcine circovirus 2 deploys PERK pathway and GRP78 for its enhanced replication in PK-15 cells. Viruses, 8(2): 56. http://dx.doi.org/10.3390/v8020056

    Article  PubMed Central  Google Scholar 

  • Zhu, B., Xu, F., Li, J., et al., 2012a. Porcine circovirus type 2 explores the autophagic machinery for replication in PK-15 cells. Virus Res., 163(2): 476–485. http://dx.doi.org/10.1016/j.virusres.2011.11.012

    Article  CAS  PubMed  Google Scholar 

  • Zhu, B., Zhou, Y., Xu, F., et al., 2012b. Porcine circovirus type 2 induces autophagy via the AMPK/ERK/TSC2/mTOR signaling pathway in PK-15 cells. J. Virol., 86(22): 12003–12012. http://dx.doi.org/10.1128/JVI.01434-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-huan Fang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 31272534) and the Department of Education of Zhejiang Province (No. Y201635576), China

ORCID: Ying-shan ZHOU, http://orcid.org/0000-0002-8011-431X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Ys., Gu, Yx., Qi, Bz. et al. Porcine circovirus type 2 capsid protein induces unfolded protein response with subsequent activation of apoptosis. J. Zhejiang Univ. Sci. B 18, 316–323 (2017). https://doi.org/10.1631/jzus.B1600208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600208

Key words

CLC number

关键词