Skip to main content
Log in

Protective effect of dihydropteridine reductase against oxidative stress is abolished with A278C mutation

A278C位点突变减弱了二氢生物蝶呤还原酶的抗氧化作用

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

To evaluate the antioxidation of dihydrobiopterin reductase and to explore the effect of A278C mutation of the quinoid dihydropteridine reductase (QDPR) gene on its antioxidant activity.

Methods

First, plasmids with different genes (wild and mutant QDPR) were constructed. After gene sequencing, they were transfected into human kidney cells (HEK293T). Then, the intracellular production of reactive oxygen species (ROS) and tetrahydrobiopterin (BH4) was detected after cells were harvested. Activations of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4), glutathione peroxidase 3 (GPX3), and superoxide dismutase 1 (SOD1) were analyzed to observe the oxidative stress after transfection. The expression of the neuronal nitric oxide synthase (nNOS) gene was analyzed by semiquantitative reverse-transcription polymerase chain reaction (RT-PCR). We also detected the activation of transforming growth factor β1 (TGF-β1) by enzyme-linked immunosorbent assay (ELISA) to observe the connection of TGF-β1 and oxidative stress.

Results

The exogenous wild-type QDPR significantly decreased the expression of nNOS, NOX4, and TGF-β1 and induced the expression of SOD1 and GPX3, but the mutated QDPR lost this function and resulted in excessive ROS production. Our data also suggested that the influence on the level of BH4 had no significant difference between mutated and the wild-type QDPR transfection.

Conclusions

Wild-type QDPR played an important role in protecting against oxidative stress, but mutant QDPR failed to have these beneficial effects.

中文概要

目的

评估二氢生物蝶呤还原酶(QDPR)的抗氧化作 用,并初步探讨QDPR 基因A278C 位点突变对 其抗氧化作用的影响。

创新点

首次在体外实验中发现QDPR 有抗氧化作用,且 此作用在A278C 位点突变后减弱。

方法

我们构建了野生型和突变型QDPR 质粒,且分别转染至人胚肾293 细胞中(HEK293T)。实验可 分为以下三组:空白质粒对照组、野生型QDPR 组和突变型QDPR 组。三天后收集细胞观察活性 氧(ROS)和四氢生物蝶呤(BH4)的表达量, 使用免疫印迹的方法检测烟酰胺腺嘌呤二核苷 酸磷酸氧化酶4(NOX4)、谷胱甘肽过氧化物酶3 (GPX3)和超氧化物歧化酶1(SOD1)的蛋白 表达水平。用半定量逆转录- 聚合酶链反应 (RT-PCR)方法分析神经型一氧化氮合成酶 (nNOS)基因的表达。用酶联免疫吸附测定 (ELISA)试剂盒检测转化生长因子-β1(TGF-β1) 的活性。

结论

本实验中野生型QDPR 可以显著降低nNOS、 NOX4 和TGF-β1 的水平,同时提高SOD1 和 GPX3 表达。但当QDPR 发生位点突变后没有观 察到上述现象,并且突变型会导致ROS 过量产 生。我们的数据还表明,野生型和突变型QDPR 对BH4 含量的影响无显著差异。综上所述,QDPR 有抗氧化作用,但A278C 位点突变后会影响 QDPR 的抗氧化功能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhattacharjee, N., Barma, S., Konwar, N., et al., 2016. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: an update. Eur. J. Pharmacol., 791:8–24. http://dx.doi.org/10.1016/j.ejphar.2016.08.022

    Article  CAS  PubMed  Google Scholar 

  • Brownlee, M., 2001. Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865):813–820. http://dx.doi.org/10.1038/414813a

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Esteban, M., Almeida, A., Medina, J.M., 2002. Tetrahydrobiopterin deficiency increases neuronal vulnerability to hypoxia. J. Neurochem., 82(5):1148–1159. http://dx.doi.org/10.1046/j.1471-4159.2002.01055.x

    Article  CAS  PubMed  Google Scholar 

  • Dobashi, K., Asayama, K., Hayashibe, H., et al., 1991. Effect of diabetes mellitus induced by streptozotocin on renal superoxide dismutases in the rat. A radioimmunoassay and immunohistochemical study. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol., 60(1):67–72. http://dx.doi.org/10.1007/BF02899529

    Article  CAS  PubMed  Google Scholar 

  • Feng, B., Yan, X.F., Xue, J.L., et al., 2013. The protective effects of α-lipoic acid on kidneys in type 2 diabetic Goto-Kakisaki rats via reducing oxidative stress. Int. J. Mol. Sci., 14(4):6746–6756. http://dx.doi.org/10.3390/ijms14046746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, Y., Gong, Y., Zhang, H., et al., 2013. Regulation of transforming growth factor β1 gene expression by dihydropteridine reductase in kidney 293T cells. Biochem. Cell Biol., 91(3):187–193. http://dx.doi.org/10.1139/bcb-2012-0087

    Article  CAS  PubMed  Google Scholar 

  • Horie, K., Miyata, T., Maeda, K., et al., 1997. Immunohistochemical colocalization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy. J. Clin. Invest., 100(12): 2995–3004. http://dx.doi.org/10.1172/JCI119853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J.A., Montagnani, M., Koh, K.K., et al., 2006. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation, 113(15):1888–1904. http://dx.doi.org/10.1161/CIRCULATIONAHA.105.563213

    Article  PubMed  Google Scholar 

  • Möllsten, A., Lajer, M., Jorsal, A., et al., 2009. The endothelial nitric oxide synthase gene and risk of diabetic nephropathy and development of cardiovascular disease in type 1 diabetes. Mol. Genet. Metab., 97(1):80–84. http://dx.doi.org/10.1016/j.ymgme.2009.01.013

    Article  PubMed  Google Scholar 

  • Newsholme, P., Gaudel, C., Krause, M., 2012. Mitochondria and diabetes. An intriguing pathogenetic role. In: Scatena, R., Bottoni, P., Giardina, B. (Eds.), Advances in Mitochondrial Medicine. Advances in Experimental Medicine and Biology, Vol. 942. Springer Netherlands, p.235–247. http://dx.doi.org/10.1007/978-94-007-2869-1_10

    Article  CAS  Google Scholar 

  • Oliveira, H.R., Verlengia, R., Carvalho, C.R., et al., 2003. Pancreatic β-cells express phagocyte-like NAD(P)H oxidase. Diabetes, 52(6):1457–1463. http://dx.doi.org/10.2337/diabetes.52.6.1457

    Article  CAS  PubMed  Google Scholar 

  • Ong, H.B., Sienkiewicz, N., Wyllie, S., et al., 2011. Dissecting the metabolic roles of pteridine reductase 1 in Trypanosoma brucei and Leishmania major. J. Biol. Chem., 286(12): 10429–10438. http://dx.doi.org/10.1074/jbc.M110.209593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, H.Z., Zhang, L., Guo, M.Y., et al., 2010. The oxidative stress status in diabetes mellitus and diabetic nephropathy. Acta Diabetol., 47(S1):71–76. http://dx.doi.org/10.1007/s00592-009-0128-1

    Article  CAS  PubMed  Google Scholar 

  • Satoh, M., Fujimoto, S., Arakawa, S., et al., 2008. Angiotensin II type 1 receptor blocker ameliorates uncoupled endothelial nitric oxide synthase in rats with experimental diabetic nephropathy. Nephrol. Dial. Transplant., 23(12): 3806–3813. http://dx.doi.org/10.1093/ndt/gfn357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnackenberg, C.G., Wilcox, C.S., 2001. The SOD mimetic tempol restores vasodilation in afferent arterioles of experimental diabetes. Kidney Int., 59(5):1859–1864. http://dx.doi.org/10.1046/j.1523-1755.2001.0590051859.x

    Article  CAS  PubMed  Google Scholar 

  • Shah, A., Xia, L., Goldberg, H., et al., 2013. Thioredoxininteracting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells. J. Biol. Chem., 288(10):6835–6848. http://dx.doi.org/10.1074/jbc.M112.419101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, A.K., Bharti, S., Kumar, R., et al., 2012. Syzygium cumini ameliorates insulin resistance and β-cell dysfunction via modulation of PPARγ, dyslipidemia, oxidative stress, and TNF-α in type 2 diabetic rats. J. Pharmacol. Sci., 119(3):205–213. http://dx.doi.org/10.1254/jphs.11184FP

    Article  CAS  PubMed  Google Scholar 

  • Si, Q., Sun, S.F., Gu, Y.T., 2017. A278C mutation of dihydropteridine reductase decreases autophagy via mTOR signaling. Acta Biochim. Biophys. Sin., 49(8):706–712. http://dx.doi.org/10.1093/abbs/gmx061

    Article  PubMed  Google Scholar 

  • Thöny, B., Auerbach, G., Blau, N., 2000. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem. J., 347(1):1–16. http://dx.doi.org/10.1042/bj3470001

    Article  PubMed  PubMed Central  Google Scholar 

  • Uchizono, Y., Takeya, R., Iwase, M., et al., 2006. Expression of isoforms of NADPH oxidase components in rat pancreatic islets. Life Sci., 80(2):133–139. http://dx.doi.org/10.1016/j.lfs.2006.08.031

    Article  CAS  PubMed  Google Scholar 

  • Ugolino, J., Ji, Y.J., Conchina, K., et al., 2016. Loss of C9orf72 enhances autophagic activity via deregulated mTOR and TFEB signaling. PLoS Genet., 12(11):e1006443. http://dx.doi.org/10.1371/journal.pgen.1006443

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Ke, Z., Chen, G., et al., 2012. Cdc42-dependent activation of NADPH oxidase is involved in ethanol-induced neuronal oxidative stress. PLoS ONE, 7(5):e38075. http://dx.doi.org/10.1371/journal.pone.0038075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, H.T., Zhen, J., Pang, B., et al., 2015. Ginsenoside Rg1 ameliorates oxidative stress and myocardial apoptosis in streptozotocin-induced diabetic rats. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(5):344–354. http://dx.doi.org/10.1631/jzus.B1400204

    Article  CAS  Google Scholar 

  • Zeng, G., Nystrom, F.H., Ravichandran, L.V., et al., 2000. Roles for insulin receptor, PI3-kinase, and Akt in insulinsignaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation, 101(13): 1539–1545. http://dx.doi.org/10.1161/01.CIR.101.13.1539

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Prof. Peng-ming CHEN and Assistant Prof. Jing YANG of China-Japan Friendship Hospital, Beijing, China for their constructive comments on the experimental design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Li.

Additional information

Project supported by the National Natural Science Foundation of China (No. 81130066) and the International Cooperation and Exchanges of the National Natural Science Foundation of China (No. 81620108031)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Yt., Wang, Yc., Zhang, Hj. et al. Protective effect of dihydropteridine reductase against oxidative stress is abolished with A278C mutation. J. Zhejiang Univ. Sci. B 18, 770–777 (2017). https://doi.org/10.1631/jzus.B1600123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600123

Key words

CLC number

关键词

Navigation