Skip to main content
Log in

Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition

多酚控制茶树叶片短期分解过程的研究

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols.

摘要

目的

通过测定茶树叶片的分解速率及养分释放规律, 研究茶多酚在茶树叶片分解过程中的作用。

创新点

测定了茶树叶片在茶园地表的分解速率和养分释 放规律,并确定了茶多酚/氮素比值在茶树叶片短 期分解过程中的主导作用。首次利用高效液相色 谱法监测了分解过程中儿茶素的变化规律。

方法

采集成熟的茶树叶片,在室内风干后利用分解袋 法测定其分解速率。分解袋放置于茶园地表用于 模拟田间条件,逐月收集分解样品。实验结束后, 测定各月份叶片的干重残留量、月均干重损失 率、多酚等有机组分含量以及各元素含量。

结论

茶树叶片的干物质损失规律可以“两相分解模型” 进行描述,茶多酚/氮素比值是调控分解速率的主 要因素。分解过程中,茶多酚的转换十分迅速, 同时儿茶素单体的结构影响其分解速率:大部分 的儿茶素单体在分解初始两个月内迅速消失,没 食子酸(GA)、儿茶素没食子酸酯(CG)、儿 茶素(GC)在分解后期少量检出,而其他儿茶素 已不在检测限内。茶树叶片中大量多酚的存在及 其特有性质可能影响着叶片中的养分释放过程。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adair, E.C., Parton, W.J., del Grosso, S.J., et al., 2008. Simple three-pool model accurately describes patterns of longterm litter decomposition in diverse climates. Global Change Biol., 14(11):2636–2660.

    Google Scholar 

  • Aerts, R., 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79(3):439–449. http://dx.doi.org/10.2307/3546886

    Article  Google Scholar 

  • AOAC (Association of Official Analytical Chemists., 2000. Official Methods of Analysis of AOAC, 17th Ed. AOAC International, Gaitherburg, MD, USA.

  • Berg, B., 2014. Decomposition patterns for foliar litter— a theory for influencing factors. Soil Biol. Biochem., 78: 222–232. http://dx.doi.org/10.1016/j.soilbio.2014.08.005

    Article  CAS  Google Scholar 

  • Berg, B., Cortina, J., 1995. Nutrient dynamics in some decomposing leaf and needle litter types in a Pinus sylvestris forest. Scand. J. Forest Res., 10(1-4):1–11. http://dx.doi.org/10.1080/02827589509382860

    Article  Google Scholar 

  • Berg, B., McClaugherty, C., 2003. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer-Verlag Heidelberg, Berlin, Germany. http://dx.doi.org/10.1007/978-3-662-05349-2

    Book  Google Scholar 

  • Berg, B., McClaugherty, C., Johansson, M.B., 1993. Litter mass-loss rates in late stages of decomposition at some climatically and nutritionally different pine sites. Long-term decomposition in a Scots pine forest. VIII. Can. J. Bot., 71(5):680–692. http://dx.doi.org/10.1139/b93-078

    Article  Google Scholar 

  • Bocock, K.L., Gilbert, O.J.W., 1957. The disappearance of leaf litter under different woodland conditions. Plant Soil, 9(2):179–185. http://dx.doi.org/10.1007/BF01398924

    Article  Google Scholar 

  • Chadwick, D.R., Ineson, P., Woods, C., et al., 1998. Decomposition of Pinus sylvestris litter in litter bags: influence of underlying native litter layer. Soil Biol. Biochem., 30(1):47–55. http://dx.doi.org/10.1016/S0038-0717(97)00090-4

    Article  CAS  Google Scholar 

  • Chen, Z.M., Lin, Z., 2015. Tea and human health: biomedical functions of tea active components and current issues. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(1): 87–102. http://dx.doi.org/10.1631/jzus.B1500001

    Article  CAS  Google Scholar 

  • Cooke, R.C., Whipps, J.M., 1993. Ecophysiology of Fungi. Blackwell Scientific Publications.

    Google Scholar 

  • CoûTeaux, M.M., Bottner, P., et al., 1995. Litter decomposition, climate and liter quality. Trends Ecol. Evol., 10(2):63–66. http://dx.doi.org/10.1016/S0169-5347(00)88978-8

    Article  PubMed  Google Scholar 

  • Dziadowiec, H., 1987. The decomposition of plant litter fall in an oak-linden-hornbeam forest and an oak-pine mixed forest of the Bialowieza National Park. Acta Soc. Bot. Pol., 56(1):169. http://dx.doi.org/10.5586/asbp.1987.019

    Article  Google Scholar 

  • Fahey, T.J., Hughes, J.W., Pu, M., et al., 1988. Root decomposition and nutrient flux following whole-tree harvest of northern hardwood forest. Forest Sci., 34(3): 744–768.

    Google Scholar 

  • Findlay, S., Carreiro, M., Krischik, V., et al., 1996. Effects of damage to living plants on leaf litter quality. Ecol. Appl., 6(1):269–275. http://dx.doi.org/10.2307/2269570

    Article  Google Scholar 

  • Fox, R.H., Myers, R.J.K., Vallis, I., 1990. The nitrogen mineralization rate of legume residues in soil as influenced by their polyphenol, lignin, and nitrogen contents. Plant Soil, 129(2):251–259. http://dx.doi.org/10.1007/BF00032420

    Article  CAS  Google Scholar 

  • Fujii, S., Takeda, H., 2010. Dominant effects of litter substrate quality on the difference between leaf and root decomposition process above and belowground. Soil Biol. Biochem., 42(12):2224–2230. http://dx.doi.org/10.1016/j.soilbio.2010.08.022

    Article  CAS  Google Scholar 

  • Grandy, A.S., Erich, M.S., Porter, G.A., 2000. Suitability of the anthrone–sulfuric acid reagent for determining water soluble carbohydrates in soil water extracts. Soil Biol. Biochem., 32(5):725–727. http://dx.doi.org/10.1016/S0038-0717(99)00203-5

    Article  CAS  Google Scholar 

  • Hättenschwiler, S., Vitousek, P.M., 2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol. Evol., 15(6):238–243. http://dx.doi.org/10.1016/S0169-5347(00)01861-9

    Article  PubMed  Google Scholar 

  • Heimler, D., Vignolini, P., Dini, M.G., et al., 2006. Antiradical activity and polyphenol composition of local Brassicaceae edible varieties. Food Chem., 99(3):464–469. http://dx.doi.org/10.1016/j.foodchem.2005.07.057

    Article  CAS  Google Scholar 

  • Johansson, M.B., 1993. Biomass, decomposition and nutrient release of vaccinium myrtillus leaf litter in four forest stands. Scand. J. Forest Res., 8(1-4):466–479. http://dx.doi.org/10.1080/02827589309382793

    Article  Google Scholar 

  • Kurokawa, H., Nakashizuka, T., 2008. Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology, 89(9):2645–2656. http://dx.doi.org/10.1890/07-1352.1

    Article  PubMed  Google Scholar 

  • Laskowski, R., Maryanski, M., Niklinska, M., 1995a. Changes in the chemical composition of water percolating through the soil profile in a moderately polluted catchment. Water Air Soil Poll., 85(3):1759–1764. http://dx.doi.org/10.1007/BF00477234

    Article  CAS  Google Scholar 

  • Laskowski, R., Niklinska, M., Maryanski, M., 1995b. The dynamics of chemical-elements in forest litter. Ecology, 76(5):1393–1406. http://dx.doi.org/10.2307/1938143

    Article  Google Scholar 

  • Liang, Y.R., Liu, Z., Xu, Y.R., et al., 1990. A study on chemical composition of two special green teas (Camellia sinensis). J. Sci. Food Agric., 53(4):541–548. http://dx.doi.org/10.1002/jsfa.2740530411

    Article  CAS  Google Scholar 

  • Marschner, H., Rimmington, G., 1988. Mineral nutrition of higher plants. Plant Cell Environ., 11(2):147–148. http://dx.doi.org/10.1111/j.1365-3040.1988.tb01130.x

    Google Scholar 

  • McClaugherty, C.A., Pastor, J., Aber, J.D., et al., 1985. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology, 66(1):266–275. http://dx.doi.org/10.2307/1941327

    Article  Google Scholar 

  • Meentemeyer, V., 1978. Macroclimate and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 59(3):465–472. http://dx.doi.org/10.2307/1936576

    Article  CAS  Google Scholar 

  • Melillo, J., Aber, J., Linkins, A., et al., 1989. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil, 115(2):189–198. http://dx.doi.org/10.1007/BF02202587

    Article  Google Scholar 

  • Melillo, J.M., Aber, J.D., Muratore, J.F., 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63(3):621–626. http://dx.doi.org/10.2307/1936780

    Article  CAS  Google Scholar 

  • Mesquita, R.D., Workman, S.W., Neely, C.L., 1998. Slow litter decomposition in a cecropia-dominated secondary forest of central Amazonia. Soil Biol. Biochem., 30(2): 167–175. http://dx.doi.org/10.1016/S0038-0717(97)00105-3

    Article  Google Scholar 

  • Moore, T.R., Trofymow, J.A., Taylor, B., et al., 1999. Litter decomposition rates in Canadian forests. Global Change Biol., 5(1):75–82. http://dx.doi.org/10.1046/j.1365-2486.1998.00224.x

    Article  Google Scholar 

  • Northup, R.R., Dahlgren, R.A., McColl, J.G., 1998. Polyphenols as regulators of plant-litter-soil interactions in northern California’s pygmy forest: a positive feedback? Biogeochemistry, 42(1-2):189–220. http://dx.doi.org/10.1023/A:1005991908504

    Article  CAS  Google Scholar 

  • Oglesby, K.A., Fownes, J.H., 1992. Effects of chemicalcomposition on nitrogen mineralization from green manures of 7 tropical leguminous trees. Plant Soil, 143(1): 127–132. http://dx.doi.org/10.1007/BF00009137

    Article  CAS  Google Scholar 

  • Olsen, S.R., Cole, C.V., Watanabe, F.S., et al., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture Circular 939, Washington.

    Google Scholar 

  • Osono, T., Takeda, H., 2004a. Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecol. Res., 19(6):593–602. http://dx.doi.org/10.1111/j.1440-1703.2004.00675.x

    Article  Google Scholar 

  • Osono, T., Takeda, H., 2004b. Potassium, calcium, and magnesium dynamics during litter decomposition in a cool temperate forest. J. Forest Res., 9(1):23–31. http://dx.doi.org/10.1007/s10310-003-0047-x

    Article  CAS  Google Scholar 

  • Palm, C.A., Sanchez, P.A., 1990. Decomposition and nutrient release patterns of the leaves of three tropical legumes. Biotropica, 22(4):330–338. http://dx.doi.org/10.2307/2388550

    Article  Google Scholar 

  • Palm, C.A., Sanchez, P.A., 1991. Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents. Soil Biol. Biochem., 23(1): 83–88. http://dx.doi.org/10.1016/0038-0717(91)90166-H

    Article  CAS  Google Scholar 

  • Palm, C.A., Rowland, A.P., 1997. A minimum dataset for characterization of plant quality for decomposition. In: Cadisch, G., Giller, K.E. (Eds.), Driven by Nature: Plant Litter Quality and Decomposition. CAB International, Wallingford, p.379–393.

    Google Scholar 

  • Parton, W., Silver, W.L., Burke, I.C., et al., 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315(5810):361–364. http://dx.doi.org/10.1126/science.1134853

    Article  CAS  PubMed  Google Scholar 

  • Peng, Q., Qi, Y., Dong, Y., et al., 2014. Decomposing litter and the C and N dynamics as affected by N additions in a semi-arid temperate steppe, Inner Mongolia of China. J. Arid. Land, 6(4):432–444. http://dx.doi.org/10.1007/s40333-014-0002-z

    Article  Google Scholar 

  • Preston, C.M., Trofymow, J.A., The Canadian Intersite Decomposition Experiment Working Grou., 2000. Variability in litter quality and its relationship to litter decay in Canadian forests. Can. J. Bot., 78(10):1269–1287. http://dx.doi.org/10.1139/b00-101

    Google Scholar 

  • Ruan, J.Y., Wang, G.Q., Shi, Y.Z., et al., 2003. Aluminium in tea soils, rhizosphere soil and the characteristics of Al uptake by tea plant. J. Tea Sci., 23(z1):16–20 (in Chinese). http://dx.doi.org/10.3969/j.issn.1000-369X.2003.z1.003

    Google Scholar 

  • Schmidt, M.A., Kreinberg, A.J., Gonzalez, J.M., et al., 2013. Soil microbial communities respond differently to three chemically defined polyphenols. Plant Physiol. Biochem., 72:190–197. http://dx.doi.org/10.1016/j.plaphy.2013.03.003

    Article  CAS  PubMed  Google Scholar 

  • Silver, W.L., Miya, R.K., 2001. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia, 129(3):407–419. http://dx.doi.org/10.1007/s004420100740

    Article  Google Scholar 

  • Sinsabaugh, R.L., Linkins, A., 1989. Ellulase mobility in decomposing leaf litter. Soil Biol. Biochem., 21(2):205–209. http://dx.doi.org/10.1016/0038-0717(89)90096-5

    Article  CAS  Google Scholar 

  • Swift, M.J., Heal, O.W., Anderson, J.M., 1979. Decomposition in Terrestrial Ecosystems. Blackwell Scientific Publications, Oxford, London.

    Google Scholar 

  • Taylor, B.R., Parkinson, D., Parsons, W.F.J., 1989. Nitrogen and lignin content as predictors of litter decay-rates— a microcosm test. Ecology, 70(1):97–104. http://dx.doi.org/10.2307/1938416

    Article  Google Scholar 

  • Tharayil, N., Alpert, P., Bhowmik, P., et al., 2013. Phenolic inputs by invasive species could impart seasonal variations in nitrogen pools in the introduced soils: a case study with polygonum cuspidatum. Soil Biol. Biochem., 57:858–867. http://dx.doi.org/10.1016/j.soilbio.2012.09.016

    Article  CAS  Google Scholar 

  • Trofymow, J.A., Moore, T.R., Titus, B., et al., 2002. Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can. J. Forest Res., 32(5):789–804. http://dx.doi.org/10.1139/x01-117

    Article  Google Scholar 

  • Valus, L., Jones, R.J., 1973. Net mineralization of nitrogen in leaves and leaf litter of desmodium intortum and phaseolus atropurpureus mixed with soil. Soil Biol. Biochem., 5(4):391–398. http://dx.doi.org/10.1016/0038-0717(73)90065-5

    Article  Google Scholar 

  • Wan, X., 2008. Tea Biochemistry. China Agriculture Press, Beijing, p.9–15 (in Chinese).

    Google Scholar 

  • Wang, J., Liu, L., Wang, X., et al., 2015. The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation. Global Change Biol., 21(5):2095–2104. http://dx.doi.org/10.1111/gcb.12812

    Article  Google Scholar 

  • Winder, R.S., Lamarche, J., Constabel, C.P., et al., 2013. The effects of high-tannin leaf litter from transgenic poplars on microbial communities in microcosm soils. Front. Microbiol., 4:1–10. http://dx.doi.org/10.3389/fmicb.2013.00290

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Yao-ping LUO and Hai-rong XU (both from the Institute of Tea Science, Zhejiang University, Hangzhou, China) for assistance with the experimental design and other members in the Xiao-chang WANG’s lab.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-mei Fan or Xiao-chang Wang.

Additional information

Project supported by the Open Foundation of the State Key Laboratory of Soil and Sustainable Agriculture (No. 0812201215) and the New Cultivation Model for Ecological Tea Plantation Development (No. H20151653), China

ORCID: Dong-mei FAN, http://orcid.org/0000-0001-7473-1357

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Dm., Fan, K., Yu, Cp. et al. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition. J. Zhejiang Univ. Sci. B 18, 99–108 (2017). https://doi.org/10.1631/jzus.B1600044

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600044

Key words

关键词

CLC number

Navigation