Skip to main content
Log in

Involvement of phosphatidate phosphatase in the biosynthesis of triacylglycerols in Chlamydomonas reinhardtii

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Lipid biosynthesis is essential for eukaryotic cells, but the mechanisms of the process in microalgae remain poorly understood. Phosphatidic acid phosphohydrolase or 3-sn-phosphatidate phosphohydrolase (PAP) catalyzes the dephosphorylation of phosphatidic acid to form diacylglycerols and inorganic orthophosphates. This reaction is integral in the synthesis of triacylglycerols. In this study, the mRNA level of the PAP isoform CrPAP2 in a species of Chlamydomonas was found to increase in nitrogen-free conditions. Silencing of the CrPAP2 gene using RNA interference resulted in the decline of lipid content by 2.4%–17.4%. By contrast, over-expression of the CrPAP2 gene resulted in an increase in lipid content by 7.5%–21.8%. These observations indicate that regulation of the CrPAP2 gene can control the lipid content of the algal cells. In vitro CrPAP2 enzyme activity assay indicated that the cloned CrPAP2 gene exhibited biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brindley, D.N., 1984. Intracellular translocation of phosphatidate phosphohydrolase and its possible role in the control of glycerolipid synthesis. Prog. Lipid Res., 23(3): 115–133. [doi:10.1016/0163-7827(84)90001-8]

    Article  PubMed  CAS  Google Scholar 

  • Brindley, D.N., 2004. Lipid phosphate phosphatases and related proteins: signaling functions in development, cell division, and cancer. J. Cell Biochem., 92(5):900–912. [doi:10.1002/jcb.20126]

    Article  PubMed  CAS  Google Scholar 

  • Carman, G.M., 1997. Phosphatidate phosphatases and diacylglycerol pyrophosphate phosphatases in Saccharomyces cerevisiae and Escherichia coli. BBA-Lipid. Lipid Metab., 1348(1–2):45–55. [doi:10.1016/S0005-2760(97)00095-7]

    Article  CAS  Google Scholar 

  • Carman, G.M., Henry, S.A., 1999. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog. Lipid Res., 38(5–6):361–399. [doi:10.1016/S0163-7827(99)00010-7]

    Article  PubMed  CAS  Google Scholar 

  • Chae, M., Han, G.S., Carman, G.M., 2012. The Saccharomyces cerevisiae actin patch protein App1p is a phosphatidate phosphatase enzyme. J. Biol. Chem., 287(48):40186–40196. [doi:10.1074/jbc.M112.421776]

    Article  PubMed  CAS  Google Scholar 

  • Chen, W., Zhang, C., Song, L., Sommerfeld, M., Hu, Q., 2009. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Meth., 77(1):41–47. [doi:10.1016/j.mimet.2009.01.001]

    Article  CAS  Google Scholar 

  • Chou, K.C., 2013. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst., 9(6): 1092–1100. [doi:10.1039/c3mb25555g]

    Article  PubMed  CAS  Google Scholar 

  • Chou, K.C., Shen, H.B., 2008. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc., 3(2):153–162. [doi:10.1038/nprot.2007.494]

    Article  PubMed  CAS  Google Scholar 

  • Chou, K.C., Shen, H.B., 2010a. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0. PLoS ONE, 5(4):e9931. [doi:10.1371/journal.pone.0009931]

    Article  PubMed  Google Scholar 

  • Chou, K.C., Shen, H.B., 2010b. Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms. Nat. Sci., 2(10): 1090–1103. [doi:10.4236/ns.2010.210136]

    CAS  Google Scholar 

  • Chou, K.C., Shen, H.B., 2010c. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE, 5(6):e11335. [doi:10.1371/journal.pone.0011335]

    Article  PubMed  Google Scholar 

  • Chou, K.C., Wu, Z.C., Xiao, X., 2011. iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS ONE, 6(3):e18258. [doi:10.1371/journal.pone.0018258]

    Article  PubMed  CAS  Google Scholar 

  • Chou, K.C., Wu, Z.C., Xiao, X., 2012. iLoc-Hum: using accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites. Mol. Biosyst., 8(2):629–641. [doi:10.1039/c1mb05420a]

    Article  PubMed  CAS  Google Scholar 

  • Deng, X.D., Li, Y.J., Fei, X.W., 2011. The mRNA abundance of pepc2 gene is negatively correlated with oil content in Chlamydomonas reinhardtii. Biomass Bioenerg., 35(3): 1811–1817. [doi:10.1016/j.biombioe.2011.01.005]

    Article  CAS  Google Scholar 

  • Deng, X.D., Gu, B., Li, Y.J., Hu, X.W., Guo, J.C., Fei, X.W., 2012. The roles of acyl-CoA: diacylglycerol acyltransferase 2 genes in the biosynthesis of triacylglycerols by the green algae Chlamydomonas reinhardtii. Mol. Plant, 5(4): 945–947. [doi:10.1093/mp/sss040]

    Article  PubMed  CAS  Google Scholar 

  • Exton, J.H., 1994. Phosphatidylcholine breakdown and signal transduction. BBA-Lipid. Lipid Metab., 1212(1):26–42. [doi:10.1016/0005-2760(94)90186-4]

    Article  CAS  Google Scholar 

  • Fei, X.W., Deng, X.D., 2007. A novel Fe deficiency responsive element (FeRE) regulates the expression of atx1 in Chlamydomonas reinharditii. Plant Cell Physiol., 48(10): 1496–1503. [doi:10.1093/pcp/pcm110]

    Article  PubMed  CAS  Google Scholar 

  • Gao, C.F., Xiong, W., Zhang, Y.L., Yuan, W.Q., Wu, Q.Y., 2008. Rapid quantitation of lipid in microalgae by time- domain nuclear magnetic resonace. J. Microbiol. Meth., 75(3):437–440. [doi:10.1016/j.mimet.2008.07.019]

    Article  CAS  Google Scholar 

  • Hans, G.S., Wu, W.I., Carman, G.M., 2006. The Saccharomyces cerevisiae lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J. Biol. Chem., 281: 9210–9218. [doi:10.1074/jbc.M600425200]

    Google Scholar 

  • Harris, E.H., 1989. The Chlamydomonas Source Book: A Comprehensive Guide to Biology and Laboratory Use. Academic Press, San Diego, CA.

    Google Scholar 

  • Heinonen, J.K., Lahti, R.J., 1981. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal. Biochem., 113(2):313–317. [doi:10.1016/0003-2697 (81)90082-8]

    Article  PubMed  CAS  Google Scholar 

  • Howe, A.G., McMaster, C.R., 2006. Regulation of phosphatidylcholine homeostasis by Sec14. Can. J. Physiol. Pharm., 84(1):29–38. [doi:10.1139/Y05-138]

    Article  CAS  Google Scholar 

  • Huang, G.H., Chen, G., Chen, F., 2009. Rapid screening method for lipid production in alga based on Nile red fluorescence. Biomass Bioenerg., 33(10):1386–1392. [doi:10.1016/j.biombioe.2009.05.022]

    Article  CAS  Google Scholar 

  • Kindle, K.L., 1990. High frequency nuclear transformation of Chlamydomonas reinhardtii. PNAS, 87(3):1228–1232. [doi:10.1073/pnas.87.3.1228]

    Article  PubMed  CAS  Google Scholar 

  • Klug, R.M., Benning, C., 2001. Two enzymes of diacylglyceryl-O-4′-(N,N,N,-trimethyl) homoserine biosynthesis are encoded by btaA and btaB in the purple bacterium Rhodobacter sphaeroides. PNAS, 98(10):5910–5915. [doi:10.1073/pnas.101037998]

    Article  PubMed  CAS  Google Scholar 

  • Li, Y.J., Fei, X.W., Deng, X.D., 2012. Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Biomass Bioenerg., 42:199–211. [doi:10.1016/j.biombioe.2012.03.010]

    Article  CAS  Google Scholar 

  • Liu, B., Benning, C., 2013. Lipid metabolism in microalgae distinguishes itself. Curr. Opin. Biotech., 24(2):300–309. [doi:10.1016/j.copbio.2012.08.008]

    Article  PubMed  CAS  Google Scholar 

  • Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{ - \Delta \Delta C_T }\) method. Methods, 25(4):402–408. [doi:10.1006/meth.2001.1262]

    Article  PubMed  CAS  Google Scholar 

  • Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H., Karpowicz, S.J., Witman, G.B., Terry, A., Salamov, A., Fritz-Laylin, L.K., Maréchal-Drouard, L., et al., 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318(5848): 245–250. [doi:10.1126/science.1143609]

    Article  PubMed  CAS  Google Scholar 

  • Nanjundan, M., Possmayer, F., 2003. Pulmonary phosphatidic acid phosphatase and lipid phosphate phosphohydrolase. Am. J. Physiol. Lung Cell Mol. Physiol., 284:L1–L23. [doi:10.1152/ajpcell.00460.2002]

    PubMed  CAS  Google Scholar 

  • Phan, J., Reue, K., 2005. Lipin, a lypodystrophy and obesity gene. Cell Metab., 1(1):73–83. [doi:10.1016/j.cmet.2004.12.002]

    Article  PubMed  CAS  Google Scholar 

  • Pierrugues, O., Brutesco, C., Oshiro, J., Gouy, M., Deveaux, Y., Carman, G.M., Thuriaux, P., Kazmaier, M., 2001. Lipid phosphate phosphatases in Arabidopsis regulation of the AtLPP1 gene in response to stress. J. Biol. Chem., 276(23):20300–20308. [doi:10.1074/jbc.M009726200]

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., Russell, D.W., 2001. Molecular Cloning: a Laboratory Manual (3-Volume Set). Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York.

    Google Scholar 

  • Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S., Siniossoglou, S., 2005. The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J., 24(11):1931–1941. [doi:10.1038/sj.emboj.7600672]

    Article  PubMed  CAS  Google Scholar 

  • Sciorra, V.A., Morris, A.J., 2002. Roles for lipid phosphate phosphatases in regulation of cellular signaling. BBA-Mol. Cell Biol. Lipids, 1582(1–3):45–51. [doi:10.1016/S1388-1981(02)00136-1]

    Article  CAS  Google Scholar 

  • Smith, S.W., Weiss, S.B., Kennedy, E.P., 1957. The enzymatic dephosphorylation of phosphatidic acids. J. Biol. Chem., 228:915–922.

    PubMed  CAS  Google Scholar 

  • Sorger, D., Daum, G., 2003. Triacylglycerol biosynthesis in yeast. Appl. Microbiol. Biotechnol., 61:289–299.

    PubMed  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24(8):1596–1599. [doi:10.1093/molbev/msm092]

    Article  PubMed  CAS  Google Scholar 

  • Testerink, C., Munnik, T., 2005. Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci., 10(8):368–375. [doi:10.1016/j.tplants.2005.06.002]

    Article  PubMed  CAS  Google Scholar 

  • Ullah, A.H.J., Sethumadhavan, K., Mullaney, E.J., 2005. Monitoring of unfolding and refolding in fungal phytase (phyA) by dynamic light scattering. Biochem. Biophys. Res. Commun., 327(4):993–998. [doi:10.1016/j.bbrc.2004.12.111]

    Article  PubMed  CAS  Google Scholar 

  • Ullah, A.H.J., Sethumadhavan, K., Shockey, J., 2012. Measuring phosphatidic acid phosphohydrolase (EC 3.1.3.4) activity using two phosphomolybdate-based colorimetric methods. Adv. Biol. Chem., 2(4):416–421. [doi:10.4236/abc.2012.24052]

    Article  CAS  Google Scholar 

  • Wu, Z.C., Xiao, X., Chou, K.C., 2011. iLoc-Plant: a multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites. Mol. BioSyst., 7:3287–3297. [doi:10.1039/C1MB05232B]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-wen Fei.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 30960032 and 31000117), the Major Technology Project of Hainan (No. ZDZX2013023-1), the National Nonprofit Institute Research Grants (Nos. CATAS-ITBB110507 and CATAS-ITBB 130305), the Fundamental Scientific Research Funds for Chinese Academy of Tropical Agricultural Sciences (No. 1630052013009), and the Natural Science Foundation of Hainan Province (No. 313077), China

Electronic supplementary materials: The online version of this article (doi:10.1631/jzus.B1300180) contains supplementary materials, which are available to authorized users

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Xd., Cai, Jj. & Fei, Xw. Involvement of phosphatidate phosphatase in the biosynthesis of triacylglycerols in Chlamydomonas reinhardtii . J. Zhejiang Univ. Sci. B 14, 1121–1131 (2013). https://doi.org/10.1631/jzus.B1300180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1300180

Key words

CLC number

Navigation