Skip to main content
Log in

Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The study on biochar derived from plant biomass for environmental applications is attracting more and more attention. Twelve sets of biochar were obtained by treating four phytoremediation plants, Salix rosthornii Seemen, Thalia dealbata, Vetiveria zizanioides, and Phragmites sp., sequentially through pyrolysis at 500 °C in a N2 environment, and under different temperatures (500, 600, and 700 °C) in a CO2 environment. The cation exchange capacity and specific surface area of biochar varied with both plant species and pyrolysis temperature. The magnesium (Mg) content of biochar derived from T. dealbata (TC) was obviously higher than that of the other plant biochars. This biochar also had the highest sorption capacity for phosphate and ammonium. In terms of biomass yields, adsorption capacity, and energy cost, T. dealbata biochar produced at 600 °C (TC600) is the most promising sorbent for removing contaminants (N and P) from aqueous solution. Therefore, T. dealbata appears to be the best candidate for phytoremediation application as its biomass can make a good biochar for environmental cleaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, K., Ozaki, Y., 1998. Comparison of useful terrestrial and aquatic plant species for removal of nitrogen and phosphorus from domestic wastewater. Soil Sci. Plant Nutr., 44(4):599–607. [doi:10.1080/00380768.1998.1041 4483]

    Article  Google Scholar 

  • Arias, C., Del Bubba, M., Brix, H., 2001. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Res., 35(5):1159–1168. [doi:10.1016/S0043-1354(00)00368-7]

    Article  PubMed  CAS  Google Scholar 

  • Brix, H., 1997. Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol., 35(5):11–18. [doi:10.1016/S0273-1223(97)00047-4]

    Article  CAS  Google Scholar 

  • Cao, X., Harris, W., 2010. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource Technol., 101(14):5222–5228. [doi:10.1016/j.biortech.2010.02.052]

    Article  CAS  Google Scholar 

  • Chun, Y., Sheng, G., Chiou, C.T., Xing, B., 2004. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol., 38(17):4649–4655. [doi:10.1021/es035034w]

    Article  PubMed  CAS  Google Scholar 

  • Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E., Lancelot, C., Likens, G.E., 2009. Controlling eutrophication: nitrogen and phosphorus. Science, 323(5917):1014–1015. [doi:10.1126/science.1167755]

    Article  PubMed  CAS  Google Scholar 

  • Demirbas, A., 2004. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrol., 72(2):243–248. [doi:10.1016/j.jaap.2004.07.003]

    Article  CAS  Google Scholar 

  • Ding, Y., Liu, Y.X., Wu, W.X., Shi, D.Z., Yang, M., Zhong, Z.K., 2010. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut., 213(1–4):47–55. [doi:10.1007/s11270-010-0366-4]

    Article  CAS  Google Scholar 

  • Eberhardt, T.L., Min, S.H., Han, J.S., 2006. Phosphate removal by refined aspen wood fiber treated with carboxymethyl cellulose and ferrous chloride. Bioresource Technol., 97(18):2371–2376. [doi:10.1016/j.biortech.2005.10.040]

    Article  CAS  Google Scholar 

  • Gerritse, R.G., 1993. Prediction of travel times of phosphate in soils at a disposal site for wastewater. Water Res., 27(2): 263–267. [doi:10.1016/0043-1354(93)90084-U]

    Article  CAS  Google Scholar 

  • Glaser, B., Lehmann, J., Zech, W., 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biol. Fert. Soils, 35(4):219–230. [doi:10.1007/s00374-002-0466-4]

    Article  CAS  Google Scholar 

  • Hossain, M.K., Strezov, V., Chan, K.Y., Ziolkowski, A., Nelson, P.F., 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manage., 92(1):223–228. [doi:10.1016/j.jenvman.2010.09.008]

    Article  PubMed  CAS  Google Scholar 

  • Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A.R., Pullammanappallil, P., Cao, X., 2012. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technol., 110:50–56. [doi:10.1016/j.biortech.2012.01.072]

    Article  CAS  Google Scholar 

  • Kameyama, K., Miyamoto, T., Shiono, T., Shinogi, Y., 2011. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. J. Environ. Qual., 41(4):1131–1137. [doi:10.2134/jeq2010.0453]

    Article  Google Scholar 

  • Karaosmanoglu, F., Işigigür-Ergüdenler, A., Sever, A., 2000. Biochar from the straw-stalk of rapeseed plant. Energy Fuels, 14(2):336–339. [doi:10.1021/ef9901138]

    Article  CAS  Google Scholar 

  • Kumar, S., Loganathan, V.A., Gupta, R.B., Barnett, M.O., 2011. An assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. J. Environ. Manage., 92(10):2504–2512. [doi:10.1016/j.jenvman.2011.05.013]

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, J., da Silva, J.P.Jr., Steiner, C., Nehls, T., Zech, W., Glaser, B., 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil, 249(2):343–357. [doi:10.1023/A: 1022833116184]

    Article  CAS  Google Scholar 

  • Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J.O., Thies, J., Luizão, F.J., Petersen, J., 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J., 70(5): 1719–1730. [doi:10.2136/sssaj2005.0383]

    Article  CAS  Google Scholar 

  • Lu, Q., He, Z.L., Graetz, D.A., Stoffella, P.J., Yang, X., 2010. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environ. Sci. Pollut. Res., 17(1):84–96. [doi:10.1007/s11356-008-0094-0]

    Article  CAS  Google Scholar 

  • Mohan, D., Pittman, C.U., Bricka, M., Smith, F., Yancey, B., Mohammad, J., Steele, P.H., Alexandre-Franco, M.F., Gómez-Serrano, V., Gong, H., 2007. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J. Coll. Interf. Sci., 310(1):57–73. [doi:10.1016/j.jcis.2007.01.020]

    Article  CAS  Google Scholar 

  • Pignatello, J.J., Kwon, S., Lu, Y., 2006. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. Environ. Sci. Technol., 40(24):7757–7763. [doi:10.1021/es061307m]

    Article  PubMed  CAS  Google Scholar 

  • Pulido-Novicio, L., Hata, T., Kurimoto, Y., Doi, S., Ishihara, S., Imamura, Y., 2001. Adsorption capacities and related characteristics of wood charcoals carbonized using a one-step or two-step process. J. Wood Sci., 47(1):48–57. [doi:10.1007/BF00776645]

    Article  CAS  Google Scholar 

  • Ravikovitch, P.I., Neimark, A.V., 2001. Characterization of nanoporous materials from adsorption and desorption isotherms. Coll. Surface A, 187–188:11–21. [doi:10.1016/S0927-7757(01)00614-8]

    Article  Google Scholar 

  • Schollenberger, C., Simon, R., 1945. Determination of exchange capacity and exchangeable bases in soil-ammonium acetate method. Soil Sci., 59(1):13–24.

    Article  CAS  Google Scholar 

  • Seo, B.S., Park, C.M., Song, U., Park, W.J., 2010. Nitrate and phosphate removal potentials of three willow species and a bald cypress from eutrophic aquatic environment. Landscape Ecol. Eng., 6(2):211–217. [doi:10.1007/s11355-009-0102-7]

    Article  Google Scholar 

  • Uchimiya, M., Lima, I.M., Thomas Klasson, K., Chang, S.C., Wartelle, L.H., Rodgers, J.E., 2010. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J. Agric. Food Chem., 58(9):5538–5544. [doi:10.1021/jf9044217]

    Article  PubMed  CAS  Google Scholar 

  • Valipour, A., Kalyan Raman, V., Ghole, V.S., 2009. A new approach in wetland systems for domestic wastewater treatment using Phragmites sp. Ecol. Eng., 35(12): 1797–1803. [doi:10.1016/j.ecoleng.2009.08.004]

    Article  Google Scholar 

  • Valix, M., Cheung, W., Mckay, G., 2004. Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere, 56(5):493–501. [doi:10.1016/j.chemosphere.2004.04.004]

    Article  PubMed  CAS  Google Scholar 

  • Walton, K.S., Snurr, R.Q., 2007. Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. J. Am. Chem. Soc., 129(27): 8552–8556. [doi:10.1021/ja071174k]

    Article  PubMed  CAS  Google Scholar 

  • Wilkie, A.C., Evans, J.M., 2010. Aquatic plants: an opportunity feedstock in the age of bioenergy. Biofuels, 1(2): 311–321. [doi:10.4155/bfs.10.2]

    Article  CAS  Google Scholar 

  • Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., Gao, B., 2013. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ. Sci. Pollut. Res., 20(1):358–368. [doi:10.1007/s11356-012-0873-5]

    Article  CAS  Google Scholar 

  • Yang, X., Wu, X., Hao, H., He, Z., 2008. Mechanisms and assessment of water eutrophication. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 9(3):197–209. [doi:10.1631/jzus.B0710626]

    Article  CAS  Google Scholar 

  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A.R., Cao, X., Pullammanappallil, P., Yang, L., 2011a. Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresource Technol., 102(10):6273–6278. [doi:10.1016/j.biortech.2011.03.006]

    Article  CAS  Google Scholar 

  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A.R., Cao, X., Pullammanappallil, P., Yang, L., 2011b. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J. Hazard. Mater., 190(1–3):501–507. [doi:10.1016/j.jhazmat.2011.03.083]

    Article  PubMed  CAS  Google Scholar 

  • Yuan, J.H., Xu, R.K., Zhang, H., 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technol., 102(3):3488–3497. [doi:10.1016/j.biortech.2010.11.018]

    Article  CAS  Google Scholar 

  • Zhao, F., Yang, W., Zeng, Z., Li, H., Yang, X., He, Z., Gu, B., Rafiq, M.T., Peng, H., 2012. Nutrient removal efficiency and biomass production of different bioenergy plants in hypereutrophic water. Biomass Bioenergy, 42:212–218. [doi:10.1016/j.biombioe.2012.04.003]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He-ping Zhao or Xiao-e Yang.

Additional information

The two authors contributed equally to this work

Project supported by the International Cooperative Project from the Ministry of Science and Technology of China (No. 2010DFB33960), the National Key Technology R&D Program of China (No. 2012BAC17B02), the Zhejiang Youth Creative Program (No. 2012QNA6004), and the Key Project from Zhejiang Science and Technology Bureau (No. 2011C13015), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Z., Zhang, Sd., Li, Tq. et al. Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. J. Zhejiang Univ. Sci. B 14, 1152–1161 (2013). https://doi.org/10.1631/jzus.B1300102

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1300102

Key words

CLC number

Navigation