Skip to main content
Log in

Atrazine biodegradation efficiency, metabolite detection, and trzD gene expression by enrichment bacterial cultures from agricultural soil

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Atrazine is a selective herbicide used in agricultural fields to control the emergence of broadleaf and grassy weeds. The persistence of this herbicide is influenced by the metabolic action of habituated native microorganisms. This study provides information on the occurrence of atrazine mineralizing bacterial strains with faster metabolizing ability. The enrichment cultures were tested for the biodegradation of atrazine by high-performance liquid chromatography (HPLC) and mass spectrometry. Nine cultures JS01.Deg01 to JS09.Deg01 were identified as the degrader of atrazine in the enrichment culture. The three isolates JS04.Deg01, JS07.Deg01, and JS08.Deg01 were identified as efficient atrazine metabolizers. Isolates JS04.Deg01 and JS07.Deg01 produced hydroxyatrazine (HA) N-isopropylammelide and cyanuric acid by dealkylation reaction. The isolate JS08.Deg01 generated deethylatrazine (DEA), deisopropylatrazine (DIA), and cyanuric acid by N-dealkylation in the upper degradation pathway and later it incorporated cyanuric acid in their biomass by the lower degradation pathway. The optimum pH for degrading atrazine by JS08.Deg01 was 7.0 and 16S rDNA phylogenetic typing identified it as Enterobacter cloacae strain JS08.Deg01. The highest atrazine mineralization was observed in case of isolate JS08.Deg01, where an ample amount of trzD mRNA was quantified at 72 h of incubation with atrazine. Atrazine bioremediating isolate E. cloacae strain JS08.Deg01 could be the better environmental remediator of agricultural soils and the crop fields contaminated with atrazine could be the source of the efficient biodegrading microbial strains for the environmental cleanup process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agertved, J., Rugge, K., Barker, J.F., 1992. Transformation of the herbicides MCPP and atrazine under natural aquifer conditions. Ground Water, 30(4):500–506. [doi:10.1111/j.1745-6584.1992.tb01525.x]

    Article  CAS  Google Scholar 

  • Behki, R.M., Khan, S.U., 1994. Degradation of atrazine, propazine, and simazine by Rhodococcus strain B-30. J. Agric. Food Chem., 42(5):1237–1241. [doi:10.1021/jf00041a036]

    Article  CAS  Google Scholar 

  • Behki, R., Topp, E., Dick, W., Germon, P., 1993. Metabolism of the herbicide atrazine by Rhodococcus strains. Appl. Environ. Microbiol., 59(6):1955–1959.

    PubMed  CAS  Google Scholar 

  • Cappuccino, J.G., Sherman, N., 2004. Microbiology: a Laboratory Manual. Pearson Education Inc., Singapore.

    Google Scholar 

  • Cheng, G., Shapir, N., Sadowsky, M.J., Wackett, L.P., 2005. Allophanate hydrolase, not urease, functions in bacterial cyanuric acid metabolism. Appl. Environ. Microbiol., 71(8):4437–4445. [doi:10.1128/AEM.71.8.4437-4445.2005]

    Article  PubMed  CAS  Google Scholar 

  • Cohen, S.Z., Creege, S.M., Carsel, R.F., Enfield, C.G., 1984. Potential Pesticide Contamination of Groundwater from Agricultural Uses. In: Krueger, R.F., Sieber, J.N. (Eds.), Treatment and Disposal of Pesticide Wastes. p.297–325. [doi:10.1021/bk-1984-0259.ch018]

    Chapter  Google Scholar 

  • Cole, J.R., Chai, B., Marsh, T.L., Farris, R.J., Wang, Q., Kulam, S.A., Chandra, S., McGarrell, D.M., Schmidt, T.M., Garrity, G.M., et al., 2003. The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucl. Acids Res., 31(1):442–443. [doi:10.1093/nar/gkg039]

    Article  PubMed  CAS  Google Scholar 

  • Comber, S.D.W., 1999. Abiotic persistence of atrazine and simazine in water. Pestic. Sci., 55(7):696–702. [doi:10.1002/(SICI)1096-9063(199907)55:7〈696::AID-PS11〉3.0.CO;2-7]

    Article  CAS  Google Scholar 

  • Cook, A.M., 1987. Biodegradation of s-triazine xenobiotics. FEMS Microbiol. Lett., 46(2):93–116. [doi:10.1016/0378-1097(87)90059-0]

    Article  CAS  Google Scholar 

  • de Souza, M.L., Newcombe, D., Alvey, S., Crowley, D.E., Hay, A., Sadowsky, M.J., Wackett, L.P., 1998. Molecular basis of a bacterial consortium: interspecies catabolism of atrazine. Appl. Environ. Microbiol., 64(1):178–184.

    PubMed  Google Scholar 

  • Eaton, R.W., Karns, J.S., 1991. Cloning and analysis of the s-triazine catabolic genes from Pseudomonas sp. strain NRRLB-12227. J. Bacteriol., 173(3):1215–1222.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J., 2008. PHYLIP (Phylogeny Inference Package), Version 3.68. Department of Genome Sciences, University of Washington, Seattle, USA.

    Google Scholar 

  • Fruchey, I., Shapir, N., Sadowsky, M.J., Wackett, L.P., 2003. On the origins of cyanuric acid hydrolase: purification, substrates, and prevalence of AtzD from Pseudomonas sp. strain ADP. Appl. Environ. Microbiol., 69(6):3653–3657. [doi:10.1128/AEM.69.6.3653-3657.2003]

    Article  PubMed  CAS  Google Scholar 

  • Ganesh-Kumar, S., Solomon, R.D.J., Kalimuthu, K., Vimalan, J., 2010. Evidence of aerobic degradation of polychlorinated biphenyl as growth substrate by new bacteria Stenotrophomonas sp. Jsg1 and Cupriavidus taiwanensis Jsg2. Carpath. J. Earth Environ. Sci., 5(2):169–176.

    Google Scholar 

  • Ganesh-Kumar, S., Kalimuthu, K., Solomon, R.D.J., 2013. A novel bacterium that degrades Aroclor-1254 and its bphC gene encodes an extradiol aromatic ring cleavage dioxygenase (EARCD). Water Air Soil Pollut., 224(6):1587. [doi:10.1007/s11270-013-1587-0]

    Article  Google Scholar 

  • Ghosh, P.K., Philip, L.I.G.Y., 2006. Environmental significance of atrazine in aqueous systems and its removal by biological processes: an overview. Global NEST J., 8(2):159–178.

    Google Scholar 

  • Hanioka, N., Jinno, H., Tanaka-Kagawa, T., Nishimura, T., Ando, M., 1999. In vitro metabolism of chlorotriazines: characterization of simazine, atrazine, and propazine metabolism using liver microsomes for rats treated with various cytochrome P450 inducers. Toxicol. Appl. Pharmacol., 156(3):195–205. [doi:10.1006/taap.1999.8648]

    Article  PubMed  CAS  Google Scholar 

  • Hapeman, C.J., Karns, J.S., Shelton, D.R., 1995. Total mineralization of aqueous atrazine in the presence of ammonium nitrate using ozone and Klebsiella terragena (strain DRS-I): mechanistic considerations for pilot scale disposal. J. Agric. Food Chem., 43(5):1383–1391. [doi:10.1021/jf00053a047]

    Article  CAS  Google Scholar 

  • Kadian, N., Gupta, A., Satya, S., Mehta, R.K., Malik, A., 2008. Biodegradation of herbicide (atrazine) in contaminated soil using various bioprocessed materials. Bioresource Technol., 99(11):4642–4647. [doi:10.1016/j.biortech.2007.06.064]

    Article  CAS  Google Scholar 

  • Kalimuthu, K., Solomon, R.D.J., Ganesh-Kumar, S., Vimalan, J., 2011. Reductive dechlorination of perchloroethylene by Bacillus sp. Jsk1 isolated from dry cleaning industrial sludge. Carpath. J. Earth Environ. Sci., 6(1):165–170.

    Google Scholar 

  • Karns, J.S., 1999. Gene sequence and properties of an s-triazine ring cleavage enzyme from Pseudomonas sp. strain NRRLB-12227. Appl. Environ. Microbiol., 65(8): 3512–3517.

    PubMed  CAS  Google Scholar 

  • Karns, J.S., Eaton, R.W., 1997. Genes encoding s-triazine degradation are plasmid-borne in Klebsiella pneumoniae strain 99. J. Agric. Food Chem., 45(3):1017–1022. [doi:10.1021/jf960464+]

    Article  CAS  Google Scholar 

  • Kolpin, D.W., Thurman, E.M., Linhart, S.M., 1998. The environmental occurrence of herbicides: the importance of degradates in groundwater. Arch. Environ. Contam. Toxicol., 35(3):385–390. [doi:10.1007/s002449900392]

    Article  PubMed  CAS  Google Scholar 

  • Lone, M.I., He, Z.L., Stoffella, P.J., Yang, X.E., 2008. Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J. Zhejiang Univ.-Sci. B, 9(3):210–220. [doi:10.1631/jzus.B0710633]

    Article  PubMed  CAS  Google Scholar 

  • Mandelbaum, R.T., Allan, D.L., Wackett, L.P., 1995. Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl. Environ. Microbiol., 61(4):1451–1457.

    PubMed  CAS  Google Scholar 

  • Martinez, B., Tomkins, J., Wackett, L.P., Wing, R., Sadowsky, M.J., 2001. Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J. Bacteriol., 83(19): 5684–5697. [doi:10.1128/JB.183.19.5684-5697.2001]

    Article  Google Scholar 

  • McInroy, J.A., Kloepper, J.W., 1995. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil, 173(2):337–342. [doi:10.1007/BF00011472]

    Article  CAS  Google Scholar 

  • Piutti, S., Semon, E., Landry, D., Hartmann, A., Dousset, S., Lichtfouse, E., Topp, E., Soulas, G., Martin-Laurent, F., 2003. Isolation and characterisation of Nocardioides sp. SP12, an atrazine-degrading bacterial strain possessing the gene trzN from bulk and maize rhizosphere soil. FEMS Microbiol. Lett., 221(1):111–117. [doi:10.1016/S0378-1097(03)00168-X]

    Article  PubMed  CAS  Google Scholar 

  • Popov, V.H., Cornish, P.S., Sultana, K., Morris, E.C., 2005. Atrazine degradation in soils: the role of microbial communities, atrazine application history, and soil carbon. Soil Res., 43(7):861–871. [doi:10.1071/SR04048]

    Article  CAS  Google Scholar 

  • Rousseaux, S., Hartmann, A., Soulas, G., 2001. Isolation and characterisation of new Gram-negative and Gram- positive atrazine degrading bacteria from different French soils. FEMS Microbiol. Ecol., 36(2–3):211–222. [doi:10.1016/S0168-6496(01)00135-0]

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., Russel, D.W., 2001. Molecular Cloning: a Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, p.213.

    Google Scholar 

  • Satheeja Santhi, V., Jebakumar, S.R.D., 2011. Phylogenetic analysis and antimicrobial activities of Streptomyces isolates from mangrove sediment. J. Basic Microbiol., 51(1): 71–79. [doi:10.1002/jobm.201000107]

    Article  PubMed  CAS  Google Scholar 

  • Seghers, D., Wittebolle, L., Top, E.M., Verstraete, W., Siciliano, S.D., 2004. Impact of agricultural practices on the Zea mays L. endophytic community. Appl. Environ. Microbiol., 70(3):1475–1482. [doi:10.1128/AEM.70.3.1475-1482.2004]

    Article  PubMed  CAS  Google Scholar 

  • Seiler, A., Brenneisen, P., Green, D.H., 1992. Benefits and risks of plant protection products-possibilities of protecting drinking water: case atrazine. Water Supply, 10(2):31–42.

    CAS  Google Scholar 

  • Seto, M., Kimbara, K., Shimura, M., Hatta, T., Fukuda, M., Yano, K., 1995. A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol., 61(9):3353–3358.

    PubMed  CAS  Google Scholar 

  • Shapir, N., Osborne, J.P., Johnson, G., Sadowsky, M.J., Wackett, L.P., 2002. Purification, substrate range, and metal center of AtzC: the N-isopropylammelide aminohydrolase involved in bacterial atrazine metabolism. J. Bacteriol., 184(19):5376–5384. [doi:10.1128/JB.184.19.5376-5384.2002]

    Article  PubMed  CAS  Google Scholar 

  • Shapir, N., Cheng, G., Sadowsky, M.J., Wackett, L.P., 2006. Purification and characterization of TrzF: biuret hydrolysis by allophanate hydrolase supports growth. Appl. Environ. Microbiol., 72(4):2491–2495. [doi:10.1128/AEM. 72.4.2491-2495.2006]

    Article  PubMed  CAS  Google Scholar 

  • Siripattanakul, S., Wirojanagud, W., McEvoy, J., Limpiyakorn, T., Khan, E., 2009. Atrazine degradation by stable mixed cultures enriched from agricultural soil and their characterization. J. Appl. Microbiol., 106(3):986–992. [doi:10. 1111/j.1365-2672.2008.04075.x]

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt, E., Goebel, M., 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Bacteriol., 44(4):846–849. [doi:10.1099/00207713-44-4-846]

    Article  CAS  Google Scholar 

  • Struthers, J.K., Jayachandran, K., Moorman, T.B., 1998. Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil Appl. Environ. Microbiol., 64(9):3368–3375.

    PubMed  CAS  Google Scholar 

  • Summers, W., 1970. A simple method for extraction of RNA from E. coli utilizing diethylpyrocarbonate. Anal. Biochem., 33(2):459–463.

    PubMed  CAS  Google Scholar 

  • Suzuki, D., Baba, D., Satheeja Santhi, V., Solomon, R.D.J., Katayama, A., 2013. Use of a glass bead-containing liquid medium for efficient production of a soil-free culture with polychlorinated biphenyl-dechlorination activity. World J. Microbiol. Biotechnol., 29(8):1461–1471. [doi:10.1007/s11274-013-1310-8]

    Article  PubMed  CAS  Google Scholar 

  • Topp, E., Zhu, H., Nour, S.M., Houot, S., Lewis, M., Cuppels, D., 2000. Characterization of an atrazine-degrading Pseudaminobacter sp. isolated from Canadian and French agricultural soils. Appl. Environ. Microbiol., 66(7): 2773–2782. [doi:10.1128/AEM.66.7.2773-2782.2000]

    Article  PubMed  CAS  Google Scholar 

  • Udiković-Kolić, N., Hršak, D., Devers, M., Klepac-Ceraj, V., Petrić, I., Martin-Laurent, F., 2010. Taxonomic and functional diversity of atrazine-degrading bacterial communities enriched from agrochemical factory soil. J. Appl. Microbiol., 109(1):355–367. [doi:10.1111/j.1365-2672.2010.04700.x]

    PubMed  Google Scholar 

  • van Zwieten, L., Kennedy, I.R., 1995. Rapid degradation of atrazine by Rhodococcus sp. NI86/21 and by an atrazine-perfused soil. J. Agric. Food Chem., 43(5):1377–1382. [doi:10.1021/jf00053a046]

    Article  Google Scholar 

  • Wackett, L., Sadowsky, M., Martinez, B., Shapir, N., 2002. Biodegradation of atrazine and related s-triazine compounds: from enzymes to field studies. Appl. Microbiol. Biotechnol., 58(1):39–45. [doi:10.1007/s00253-001-0862-y]

    Article  PubMed  CAS  Google Scholar 

  • Wang, J.H., Zhu, L.S., Liu, A.J., Ma, T.T., Wang, Q., Xie, H., Wang, J., Jiang, T., Zhao, R.S., 2011. Isolation and characterization of an Arthrobacter sp. strain HB-5 that transforms atrazine. Environ. Geochem. Health, 33(3): 259–266. [doi:10.1007/s10653-010-9337-3]

    Article  PubMed  Google Scholar 

  • Wang, Q., Xie, S., 2012. Isolation and characterization of a high-efficiency soil atrazine-degrading Arthrobacter sp. strain. Int. Biodeter. Biodegr., 71:61–66. [doi:10.1016/j.ibiod.2012.04.005]

    Article  CAS  Google Scholar 

  • Widmer, S.K., Spalding, R.F., 1995. A natural gradient transport study of selected herbicides. J. Environ. Qual., 24(3): 445–453.

    Article  CAS  Google Scholar 

  • Yanze-Kontchou, C., Gschwind, N., 1994. Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain. Appl. Environ. Microbiol., 60(12): 4297–4302.

    PubMed  CAS  Google Scholar 

  • Zhang, S.Y., Wang, Q.F., Wan, R., Xie, S.G., 2011. Changes in bacterial community of anthracene bioremediation in municipal solid waste composting soil. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 12(9):760–768. [doi:10.1631/jzus.B1000440]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robinson David Jebakumar Solomon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solomon, R.D.J., Kumar, A. & Satheeja Santhi, V. Atrazine biodegradation efficiency, metabolite detection, and trzD gene expression by enrichment bacterial cultures from agricultural soil. J. Zhejiang Univ. Sci. B 14, 1162–1172 (2013). https://doi.org/10.1631/jzus.B1300001

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1300001

Key words

CLC number

Navigation