Skip to main content
Log in

Fungal diversity in adult date palm (Phoenix dactylifera L.) revealed by culture-dependent and culture-independent approaches

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Endophytic flora plays a vital role in the colonization and survival of host plants, especially in harsh environments, such as arid regions. This flora may, however, contain pathogenic species responsible for various troublesome host diseases. The present study is aimed at investigating the diversity of both cultivable and non-cultivable endophytic fungal floras in the internal tissues (roots and leaves) of Tunisian date palm trees (Phoenix dactylifera). Accordingly, 13 isolates from both root and leaf samples, exhibiting distinct colony morphology, were selected from potato dextrose agar (PDA) medium and identified by a sequence match search wherein their 18S–28S internal transcribed spacer (ITS) sequences were compared to those available in public databases. These findings revealed that the cultivable root and leaf isolates fell into two groups, namely Nectriaceae and Pleosporaceae. Additionally, total DNA from palm roots and leaves was further extracted and ITS fragments were amplified. Restriction fragment length polymorphism (RFLP) analysis of the ITS from 200 fungal clones (leaves: 100; roots: 100) using HaeIII restriction enzyme revealed 13 distinct patterns that were further sequenced and led to the identification of Alternaria, Cladosporium, Davidiella (Cladosporium teleomorph), Pythium, Curvularia, and uncharacterized fungal endophytes. Both approaches confirmed that while the roots were predominantly colonized by Fusaria (members of the Nectriaceae family), the leaves were essentially colonized by Alternaria (members of the Pleosporaceae family). Overall, the findings of the present study constitute, to the authors’ knowledge, the first extensive report on the diversity of endophytic fungal flora associated with date palm trees (P. dactylifera).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelghani, E.Y., Bala, K., Paul, B., 2004. Characterization of Pythium paroecandrum and its antagonism towards Botrytis cinerea, the causative agent of grey mould disease of grape. FEMS Microbiol. Lett., 230(2):177–183. [doi:10.1016/S0378-1097(03)00895-4]

    CAS  Google Scholar 

  • Alabouvette, C., Olivain, C., Migheli, Q., Steinberg, C., 2009. Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol., 184(3):529–544. [doi:10.1111/j.1469-8137.2009.03014.x]

    PubMed  CAS  Google Scholar 

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Biol., 215(3):403–410. [doi:10.1016/S0022-2836(05)80360-2]

    PubMed  CAS  Google Scholar 

  • Ampe, F., Ben Omar, N., Moizan, C., Wacher, C., Guyot, J.P., 1999. Polyphasic study of the special distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations. Appl. Environ. Microbiol., 65(12):5464–5473.

    PubMed  CAS  Google Scholar 

  • Arenal, F., Platas, G., Pelaez, F., 2005. Preussia africana and Preussia pseudominima, two new Preussia species defined based on morphological and molecular evidences. Fungal Divers., 20:1–15.

    Google Scholar 

  • Arenal, F., Platas, G., Peláez, F., 2007. A new endophytic species of Preussia (Sporormiaceae) inferred from morphological observations and molecular phylogenetic analysis. Fungal Divers., 25:1–17.

    Google Scholar 

  • Arnold, A.E., Maynard, Z., Gilbert, G.S., Coley, P.D., Kursar, T.A., 2000. Are tropical fungal endophytes hyperdiverse? Ecol. Lett., 3:267–274.

    Google Scholar 

  • Arx, J.A., 1949. Beitrage zur kenntnis der gattung Mycosphaerella. Sydowia, 3:28–100 (in German).

    Google Scholar 

  • Backman, P.A., Sikora, R.A., 2008. Endophytes: an emerging tool for biological control. Biol. Control, 46(1):1–3. [doi:10.1016/j.biocontrol.2008.03.009]

    Google Scholar 

  • Bacon, C.W., Porter, J.K., Robbins, J.D., Luttrell, E.S., 1977. Epichloe typhina from toxic tall fescue grasses. Appl. Environ. Microbiol., 34:576–581.

    PubMed  CAS  Google Scholar 

  • Bacon, C.W., Porter, J.K., Robbins, J.D., 1979. Laboratory production of ergot alkaloids by species of Balansia. J. Gen. Microbiol., 113(1):119–126. [doi:10.1099/0022 1287-113-1-119]

    PubMed  CAS  Google Scholar 

  • Bensch, K., Groenewald, J.Z., Dijksterhuis, J., Starink-Willemse, M., Andersen, B., Summerell, B.A., Shin, H.D., Dugan, F.M., Schroers, H.J., Braun, U., et al., 2010. Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Stud. Mycol., 67(1):1–94. [doi:10.3114/sim.2010.67.01]

    PubMed  CAS  Google Scholar 

  • Bimboim, H.C., Doly, J., 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res., 7(6):1513–1523. [doi:10.1093/nar/7.6.1513]

    Google Scholar 

  • Braun, R.A., Crous, P.W., Dugan, F., Groenewald, J.Z., de Hoog, G.S., 2003. Phylogeny and taxonomy of Cladosporium-like hyphomycetes, including Davidiella gen. nov., the teleomorph of Cladosporium s. str. Mycol. Prog., 2(1): 3–18. [doi:10.1007/s11557-006-0039-2]

    Google Scholar 

  • Cain, R.F., 1961. Studies of coprophilous ascomycetes. VII. Preussia. Can. J. Bot., 39(7):1633–1666. [doi:10.1139/b61-144]

    Google Scholar 

  • Camara, M.P.S., Palm, M.E., van Berkum, P., O’Neill, N.R., 2002. Molecular phylogeny of Leptosphaeria and Phaeosphaeria. Mycologia, 94(4):630–640. [doi:10.2307/3761714]

    PubMed  CAS  Google Scholar 

  • Cao, L.X., You, J.L., Zhou, S.N., 2002. Endophytic fungi from Musa acuminata leaves and roots in South China. World J. Microbiol. Biotechnol., 18(2):169–171. [doi:10.1023/A:1014491528811]

    Google Scholar 

  • Collins, C.H., Lyne, P.M., 1984. Microbiological Methods, 5th Ed. Butterworths Co., Ltd., London, p.56–113.

    Google Scholar 

  • Coppola, S., Blaiotta, G., Ercolini, D., Moschetti, G., 2001. Molecular evaluation of microbial diversity occurring in different types of Mozzarella cheese. J. Appl. Microbiol., 90(3):414–420. [doi:10.1046/j.1365-2672.2001.01262.x]

    PubMed  CAS  Google Scholar 

  • Crous, P.W., Braun, U., Schubert, K., Groenewald, J.Z., 2007. Delimiting Cladosporium from morphologically similar genera. Stud. Mycol., 58(1):33–56. [doi:10.3114/sim.2007.58.02]

    PubMed  CAS  Google Scholar 

  • Crous, P.W., Braun, U., Wingfield, M.J., Wood, A.R., Shin, H.D., 2009. Phylogeny and taxonomy of obscure genera of microfungi. Persoonia, 22:139–161.

    PubMed  CAS  Google Scholar 

  • de Cock, A.W., Mendoza, L., Padhye, A.A., Ajello, L., Kaufman, L., 1987. Pythium insidiosum sp. nov., the etiologic agent of pythiosis. J. Clin. Microbiol., 25(2): 344–349.

    PubMed  Google Scholar 

  • Dellaporta, S.L., Wood, J., Hicks, J.B., 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep., 1(4): 19–21. [doi:10.1007/BF02712670]

    CAS  Google Scholar 

  • Dickie, I.A., FitzJohn, R.G., 2007. Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza, 17(4): 259–270. [doi:10.1007/s00572-007-0129-2]

    PubMed  CAS  Google Scholar 

  • Dimuthu, S.M., Lei, C., Eric, H.C.M., Pedro, W.C., Hugo, M., Ekachai, C., Roger, G.S., Yu, P.T., Kevin, D.H., 2012. A phylogenetic and taxonomic re-evaluation of the Bipolaris-Cochliobolus-Curvularia complex. Fungal Divers., 56(1):131–144. [doi:10.1007/s13225-012-0189-2]

    Google Scholar 

  • Dini-Andreote, F., Pietrobon, V.C., Dini Andreote, F., Romão, A.S., Spósito, M.B., Araújo, W.L., 2009. Genetic variability of Brazilian isolates of Alternaria alternata detected by AFLP and RAPD techniques. Braz. J. Microbiol., 40(3):670–677. [doi:10.1590/S1517-83822009000300032]

    PubMed  CAS  Google Scholar 

  • Dixon, L.J., Schlub, R.L., Pernezny, K., Datnoff, L.E., 2009. Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology, 99(9):1015–1027. [doi:10.1094/PHYTO-99-9-1015]

    PubMed  CAS  Google Scholar 

  • Drira, N., Benbadis, A., 1985. Vegetative multiplication of date-palm (Phoenix dactylifera L.) by reversion of in vitro cultured female flower buds. J. Plant. Physiol., 119(3): 227–235. [doi:10.1016/S0176-1617(85)80182-6]

    Google Scholar 

  • Dwivedi, S.P., Husain, N., Singh, R.B., Mall, N., 2012. 18S ribosomal DNA based PCR diagnostic assay for Trichomonas vaginalis infection in symptomatic and asymptomatic women in India. Asian Pac. J. Trop. Dis., 2(2):133–138. [doi:10.1016/S2222-1808(12)60031-0]

    CAS  Google Scholar 

  • El Hassni, M., El Hadrami, A., Daayf, F., Chérif, M., Barka, E.A., El Hadrami, I., 2007. Biological control of Bayoud disease in date palm: selection of microorganisms inhibiting the causal agent and inducing defense reactions. Environ. Exp. Bot., 59(2):224–234. [doi:10.1016/j.envexpbot.2005.12.008]

    Google Scholar 

  • Felske, A., Wolterink, A., van Lis, R., de Vos, W.M., Akkermans, A.D.L., 1999. Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiol. Ecol., 30(2):137–145. [doi:10.1111/j.1574-6941.1999.tb00642.x]

    PubMed  CAS  Google Scholar 

  • Fernandes, M.R.V., Costae Silva, T.A., Pfenning, L.H., da Costa-Neto, C.M., Heinrich, T.A., de Alencar, S.M., de Lima, M.A., Ikegaki, M., 2009. Biological activities of the fermentation extract of the endophytic fungus Alternaria alternate isolated from Coffea Arabica L. Braz. J. Pharm. Sci., 45(4):677–685. [doi:10.1590/S1984-82502009000400010]

    Google Scholar 

  • Fernandez, D., Lourd, M., Ouinten, M., Tantaoui, A., Geiger, J.P., 1995. Le Bayoud du palmier dattier: une maladie qui menace la phoéniciculture. Phytoma, 469:36–39 (in French).

    Google Scholar 

  • Feurer, C., Vallaeys, T., Corrieu, G., Irlinger, F., 2004. Does smearing inoculum reflect the bacterial composition of the smear at the end of the ripening of a French soft, red-smear cheese? J. Dairy Sci., 87(10):3189–3197. [doi:10.3168/jds.S0022-0302(04)73454-2]

    PubMed  CAS  Google Scholar 

  • Fisher, P.J., Petrini, O., Petrini, L.E., Descals, E., 1992. A preliminary study of fungi inhabiting xylem and whole stems of Olea europaea. Sydowia, 44:117–221.

    Google Scholar 

  • Fisher, P.J., Petrini, L.E., Sutton, B.C., Petrini, O., 1995. A study of fungal endophytes in leaves, stems and roots of Gynoxis oleifolia Muchler (Compositae) from Ecuador. Nova Hedwigia, 60:589–594.

    Google Scholar 

  • Gao, X.X., Zhou, H., Xu, D.Y., Yu, C.H., Chen, Y.Q., Qu, L.H., 2005. High diversity of endophytic fungi from the pharmaceutical plant, Heterosmilax japonica Kunth revealed by cultivation-independent approach. FEMS Microbiol. Lett., 249(2):255–266. [doi:10.1016/j.femsle.2005.06.017]

    PubMed  CAS  Google Scholar 

  • Gherbawy, Y.A.M.H., Adler, A., Prillinger, H., 2002. Genotypic identification of Fusarium subglutinans, F. proliferatum and F. verticillioides strains isolated from maize in Austria. Mycobiology, 30(3):139–145. [doi:10.4489/MYCO.2002.30.3.139]

    CAS  Google Scholar 

  • Girlanda, M., Ghignone, S., Luppi, A.M., 2002. Diversity of sterile root-associated fungi of two Mediterranean plants. New Phytol., 155(3):481–498. [doi:10.1046/j.1469-8137.2002.00474.x]

    Google Scholar 

  • Gond, S.K., Verma, V.C., Kumar, A., Kumar, V., Kharwar, R.N., 2007. Study of endophytic fungal community from different parts of Aegle marmelos Correae (Rutaceae) from Varanasi (India). World J. Microbiol. Biotechnol., 23(10):1371–1375. [doi:10.1007/s11274-007-9375-x]

    Google Scholar 

  • Groger, D., 1972. Ergot. In: Kadis, S., Ciegler, A., Ajl, S.J. (Eds.), Microbial Toxins. Academic Press, New York, Vol. 8, p.321–373.

    Google Scholar 

  • Guo, L.D., Hyde, K.D., Liew, E.C.Y., 2001. Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Mol. Phylogenet. Evol., 20(1):1–13. [doi:10.1006/mpev.2001.0942]

    PubMed  Google Scholar 

  • Hatimi, A., 1989. Etude de la Réceptivité des Sols de Deux Palmeraies Marocaines au Bayoud. PhD Thesis, Cadi Ayyad University, Marrakech, p.58 (in French).

    Google Scholar 

  • Hibar, K., Edel-Herman, V., Steinberg, C., Gautheron, N., Daami-Remadi, M., Alabouvette, C., El Mahjoub, M., 2007. Genetic diversity of Fusarium oxysporum populations isolated from tomato plants in Tunisia. J. Phytopathol., 155(3):136–142. [doi:10.1111/j.1439-0434.2007.01198.x]

    CAS  Google Scholar 

  • Huang, W.Y., Cai, Y.Z., Surveswaran, S., Hyde, K.D., Corke, H., Sun, M., 2009. Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers., 36:69–88.

    CAS  Google Scholar 

  • Hugenholtz, P., Goebel, B.M., Pace, N.R., 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol., 180:4765–4774.

    PubMed  CAS  Google Scholar 

  • Jones, E.E., Deacon, J.W., 1995. Comparative physiology and behaviour of the mycoparasites Pythium acanthophoron, P. oligandrum and P. mycoparasiticum. Biocontr. Sci. Technol., 5(1):27–39. [doi:10.1080/09583159550039990]

    Google Scholar 

  • Khan, R., Shahzad, S., Choudhary, M.I., Khan, S.A., Ahmad, A., 2007. Biodiversity of the endophytic fungi isolated from Calotropis procera (Ait.) R. Br. Pak. J. Bot., 39(6):2233–2239.

    Google Scholar 

  • Kodsueb, R., Dhanasekaran, V., Aptroot, A., Lumyong, S., McKenzie, E.H.C., Hyde, K.D., Jeewon, R., 2006. The family Pleosporaceae: intergeneric relationships and phylogenetic perspectives based on sequence analyses of partial 28S rDNA. Mycologia, 98(4):571–583. [doi:10.3852/mycologia.98.4.571]

    PubMed  CAS  Google Scholar 

  • Kwasna, H., Ward, E., Kosiak, B., 2006. Lewia hordeicola sp. nov. from barley grain. Mycologia, 98(4):662–668. [doi:10.3852/mycologia.98.4.662]

    PubMed  Google Scholar 

  • Lamberti, F., 1988. Etiology of Two Diseases of the Date Palm at Tozeur and Nefta. Report to the Government of Tunisia.

    Google Scholar 

  • Larran, S., Monaco, C., Alippi, H.E., 2001. Endophytic fungi in leaves of Lycopersicon esculentum Mill. World J. Microbiol. Biotechnol., 17(2):181–184. [doi:10.1023/A:1016670000288]

    Google Scholar 

  • Larran, S., Perello, A., Simon, M.R., Moreno, V., 2002a. Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) leaves. World J. Microbiol. Biotechnol., 18(7):683–686. [doi:10.1023/A:1016857917950]

    CAS  Google Scholar 

  • Larran, S., Rollán, C., Bruno Angeles, H., Alippi, H.E., Urrutia, M.I., 2002b. Nota Corta: endophytic fungi in healthy soybean leaves. Invest. Agr.: Prod. Prot. Veg., 17(1): 173–177.

    Google Scholar 

  • Lee, K.S., Portman, J.L., Sweeney, C.A., Cheung, A.T.W., 2009. Fungal endophytes: an untapped natural products source of cytotoxic agents. FASEB J., 23 (Meeting Abstract Supplement):711.5.

    Google Scholar 

  • Lévesque, C.A., de Cock, A.W., 2004. Molecular phylogeny and taxonomy of the genus Pythium. Mycol. Res., 108(12):1363–1383. [doi:10.1017/S0953756204001431]

    PubMed  Google Scholar 

  • Lim, P.O., Woo, H.R., Nam, H.G., 2003. Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci., 8(6): 272–278. [doi:10.1016/S1360-1385(03)00103-1]

    PubMed  CAS  Google Scholar 

  • Lucero, M.E., Unc, A., Cooke, P., Dowd, S., Sun, S., 2011. Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var. griffithsii. PLoS ONE, 6(3):e17693. [doi:10.1371/journal.pone.0017693]

    PubMed  CAS  Google Scholar 

  • Manamgoda, D.S., Cai, L., McKenzie, E.H.C., Crous, P.W., Madrid, H., Chukeatirote, E., Shivas, G., Tan, Y.P., Hyde, K.D., 2012. A phylogenetic and taxonomic re-evaluation of the Bipolaris-Cochliobolus-Curvularia complex. Fungal Divers., 56(1):131–144. [doi:10.1007/s13225-012-0189-2]

    Google Scholar 

  • Namsi, A., Montarone, M., Serra, P., Ben Mahamoud, O., Takrouni, M.L., Zouba, A., Khoualdia, O., Bové, J.M., Duran-Vila, N., 2007. Manganese and brittle leaf disease of palm date trees. J. Plant Pathol., 89(1):125–136.

    CAS  Google Scholar 

  • Paul, B., 2004. A new species of Pythium isolated from Burgundian vineyards and its antagonism towards Botrytis cinerea, the causative agent of the grey mould disease. FEMS Microbiol. Lett., 234(2):269–274. [doi:10.1111/j.1574-6968.2004.tb09543.x]

    PubMed  CAS  Google Scholar 

  • Peláez, F., Collado, J., Arenal, F., Basilio, A., Cabello, A., Díez, M.T., García, J.B., González del Val, A., González, V., Gorrochategui, J., et al., 1998. Endophytic fungi from plants living on gypsum soils as a source of secondary metabolites with antimicrobial activity. Mycol. Res., 102(6):755–761. [doi:10.1017/S0953756297005662]

    Google Scholar 

  • Petrini, O., 1991. Fungal Endophytes of Tree Leaves. In: Andrews, J., Hirano, S. (Eds.), Microbial Ecology of Leaves. Springer, Berlin Heidelberg, New York, p.179–197. [doi:10.1007/978-1-4612-3168-4_9]

    Google Scholar 

  • Pocasangre, L., Sikora, R.A., Vilich, V., Schuster, R.P., 2000. Survey of banana endophytic fungi from Central America and screening for biological control of the burrowing nematode (Radopholus similis). Acta Hort., 53:283–290.

    Google Scholar 

  • Porras-Alfaro, A., Herrera, J., Sinsabaugh, R.L., Odenbach, K.J., Lowrey, T., Natvig, D.O., 2008. Novel root fungal consortium associated with a dominant desert grass. Appl. Environ. Microbiol., 74(9):2805–2813. [doi:10.1128/AEM.02769-07]

    PubMed  CAS  Google Scholar 

  • Pryor, B.M., Bigelow, D.M., 2003. Molecular characterization of Embellisia and Nimbya species and their relationship to Alternaria, Ulocladium, and Stemphylium. Mycologia, 95(6):1141–1154. [doi:10.2307/3761916]

    PubMed  CAS  Google Scholar 

  • Rana, B.K., Singh, U.P., Taneja, D., 1997. Antifungal activity and kinetics of inhibition by essential oil isolated from leaves of Aegle marmelos. J. Ethnopharmacol., 57(1): 29–34. [doi:10.1016/S0378-8741(97)00044-5]

    PubMed  CAS  Google Scholar 

  • Rodrigues, A., Mueller, U.G., Ishak, H.D., Bacci, M.Jr., Pagnocca, F.C., 2011. Ecology of microfungal communities in gardens of fungus-growing ants (Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas. FEMS Microbiol. Ecol., 78(2):244–255. [doi:10.1111/j.1574-6941.2011.01152.x]

    PubMed  CAS  Google Scholar 

  • Rodrigues, A., Passarini, M.R.Z., Ferro, M., Nagamoto, N.S., Forti, L.C., Bacci, M.Jr., Sette, L.D., Pagnocca, F.C., 2013. Fungal communities in the garden chamber soils of leaf-cutting ants. J. Basic Microbiol., online. [doi:10. 1002/jobm.201200458]

    Google Scholar 

  • Rosa, L.H., Vaz, A.B.M., Caligiorne, R.B., Campolina, S., Rosa, C.A., 2009. Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv. (Poaceae). Polar Biol., 32(2):161–167. [doi:10.1007/s00300-008-0515-z]

    Google Scholar 

  • Rungjindamai, N., Pinruan, U., Choeyklin, R., Hattori, T., Jones, E.B.G., 2008. Molecular characterization of basidiomycetous endophytes isolated from leaves, rachis and petioles of the oil palm, Elaeis guineensis, in Thailand. Fungal Divers., 33:139–161.

    Google Scholar 

  • Saunders, G.A., Washburn, J.O., Egerter, D.E., Anderson, J.A., 1988. Pathogenicity of fungi isolated from field collected larvae of the western tree hole mosquito, Aedes sierrensis (Diptera: Culicidae). J. Invertebr. Pathol., 52(2):360–363. [doi:10.1016/0022-2011(88)90148-6]

    PubMed  CAS  Google Scholar 

  • Schroeder, H.W., Cole, R.J., 1977. Natural occurrence of alternariols in discolored pecans. J. Agric. Food Chem., 25(1):204–206. [doi:10.1021/jf60209a032]

    CAS  Google Scholar 

  • Schroers, H.J., O’Donnell, K., Lamprecht, S.C., Kammeyer, P.L., Johnson, S., Sutton, D.A., Rinaldi, M.G., Geiser, D.M., Summerbell, R.C., 2009. TTaxonomy and phylogeny of the Fusarium dimerum species group. Mycologia, 101(1):44–70. [doi:10.3852/08-002]

    PubMed  CAS  Google Scholar 

  • Schulz, B., Wanke, U., Draeger, S., Aust, H.J., 1993. Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol. Res., 97(12): 1447–1450. [doi:10.1016/S0953-7562(09)80215-3]

    Google Scholar 

  • Shweta, S., Zuehlke, S., Ramesha, B.T., Priti, V., Kumar, P.M., Ravikanth, G., Spiteller, M., Vasudeva, R., Shaanker, R.U., 2010. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry, 71(1):117–122. [doi:10.1016/j.phytochem.2009.09.030]

    PubMed  CAS  Google Scholar 

  • Sigler, W.V., Zeyer, J., 2002. Microbial diversity and activity along the fore fields of two receding glaciers. Microbial Ecol., 43(4):397–407. [doi:10.1007/s00248-001-0045-5]

    CAS  Google Scholar 

  • Smit, E., Leeflang, P., Glandorf, B., van Elsas, J.D., Wernars, K., 1999. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl. Environ. Microbiol., 65(6): 2614–2621.

    PubMed  CAS  Google Scholar 

  • Sonjak, S., Beguiristain, T., Leyval, C., Regvar, M., 2009. Temporal temperature gradient gel electrophoresis (TTGE) analysis of arbuscular mycorrhizal fungi associated with selected plants from saline and metal polluted environments. Plant Soil, 314(1–2):25–34. [doi:10.1007/s11104-008-9702-5]

    CAS  Google Scholar 

  • Steinberg, C., Edel, V., Gautheron, N., Vallaeys, T., Alabouvette, C., 1997a. Characterization of Fusarium oxysporum Populations by Growth Parameters Evaluation in Microtiter Plates. In: Dehne, H.W., Adam, G., Diekmann, M., Frahm, J., Mauler-Machnik, A. (Eds.), Diagnosis and Identification of Plant Pathogens. Kluwer Academic Publisher, Dordrecht, p.535–538. [doi:10.1007/978-94-009-0043-1_119]

    Google Scholar 

  • Steinberg, C., Edel, V., Gautheron, N., Abadie, C., Vallaeys, T., Alabouvette, C., 1997b. Phenotypic characterization of natural populations of Fusarium oxysporum in relation to genotypic characterization. FEMS Microbiol. Ecol., 24(1):73–85. [doi:10.1111/j.1574-6941.1997.tb00424.x]

    CAS  Google Scholar 

  • Strobel, G., Daisy, B., 2003. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev., 67(4):491–502. [doi:10.1128/MMBR.67.4.491-502.2003]

    PubMed  CAS  Google Scholar 

  • Sutthisa, W., Sanoamuang, N., Chuprayoon, S., 2010. Evaluation of amplified rDNA restriction analysis (ARDRA) for the identification of Fusarium species, the causal agent associated with mulberry root rot disease in Northeastern Thailand. J. Agric. Technol., 6(2):379–390.

    Google Scholar 

  • Tambong, J.T., de Cock, A.W.A.M., Tinker, N.A., Levesque, C.A., 2006. Oligonucleotide array for identification and detection of Pythium species. Appl. Environ. Microbiol., 72(4):2691–2706. [doi:10.1128/AEM.02183-06]

    PubMed  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24(8):1596–1599. [doi:10.1093/molbev/msm092]

    PubMed  CAS  Google Scholar 

  • Tao, G., Liu, Z.Y., Hyde, K.D., Lui, X.Z., Yu, Z.N., 2008. Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Divers., 33:101–122.

    Google Scholar 

  • Taylor, J.E., Hyde, K.D., Jones, E.B.G., 1999. Endophytic fungi associated with the temperate palm, Trachycarpus fortunei, within and outside its natural geographic range. New Phytol., 142(2):335–346. [doi:10.1046/j.1469-8137.1999.00391.x]

    Google Scholar 

  • Thomma, B.P.H.J., 2003. Alternaria spp.: from general saprophyte to species parasite. Mol. Plant Pathol., 4(4): 225–236. [doi:10.1046/j.1364-3703.2003.00173.x]

    PubMed  CAS  Google Scholar 

  • Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids Res., 22(22):4673–4680. [doi:10.1093/nar/22.22.4673]

    PubMed  CAS  Google Scholar 

  • Vallaeys, T., Topp, E., Muyzer, G., Macheret, V., Laguerre, G., Rigaud, A., Soulas, G., 1997. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiol. Ecol., 24(3):279–285. [doi:10.1111/j.1574-6941.1997.tb00445.x]

    CAS  Google Scholar 

  • Wang, J.M., Yang, J.M., Zhu, J.H., Jia, Q.J., Tao, Y.Z., 2010. Assessment of genetic diversity by simple sequence repeat markers among forty elite varieties in the germplasm for malting barley breeding. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 11(10):792–800. [doi:10.1631/jzus.B0900414]

    Google Scholar 

  • Wang, Y., Zeng, Q.G., Zhang, Z.B., Yan, R.M., Wang, L.Y., Zhu, D., 2011. Isolation and characterization of endophytic huperzine A-producing fungi from Huperzia serrata. J. Ind. Microbiol. Biotechnol., 38(9):1267–1278. [doi:10.1007/s10295-010-0905-4]

    PubMed  CAS  Google Scholar 

  • Watanabe, M., Yonezawa, T., Lee, K.I., Kumagai, S., Sugita-Konishi, Y., Goto, K., Hara-Kud, Y., 2011. Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes. BMC Evol. Biol., 11(1):322. [doi:10.1186/1471-2148-11-322]

    PubMed  CAS  Google Scholar 

  • Webber, J., 1981. A natural biological control of Dutch elm disease. Nature, 292(5822):449–451. [doi:10.1038/292 449a0]

    Google Scholar 

  • White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (Eds.), PCR Protocols: A Guide to Methods and Applications. Academic Press Inc., New York, p.315–322.

    Google Scholar 

  • Wilson, D., 1995. Endophyte: the evolution of a term and clarification of its use and definition. Oikos, 73(2): 274–276. [doi:10.2307/3545919]

    Google Scholar 

  • Yan, X.N., Sikora, R.A., Zheng, J.W., 2011. Potential use of cucumber (Cucumis sativus L.) endophytic fungi as seed treatment agents against root-knot nematode Meloidogyne incognita. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 12(3):219–225. [doi:10.1631/jzus.B1000165]

    Google Scholar 

  • Zhang, F., Li, L., Niu, S., Si, Y., Guo, L., Jiang, X., Che, Y., 2012. A thiopyranchromenone and other chromone derivatives from an endolichenic fungus, Preussia africana. J. Nat. Prod., 75(2):230–237. [doi:10.1021/np2009362]

    PubMed  CAS  Google Scholar 

  • Zhang, T., Xiang, H.B., Zhang, Y.Q., Liu, H.Y., Wei, Y.Z., Zhao, L.X., Yu, L.Y., 2013. Molecular analysis of fungal diversity associated with three bryophyte species in the Fildes Region, King George Island, maritime Antarctica. Extremophiles, 17(5):757–765. [doi:10.1007/s00792-013-0558-0]

    PubMed  Google Scholar 

  • Zhang, Y., Schoch, C.L., Fournier, J., Crous, P.W., de Gruyter, J., Woudenberg, J.H.C., Hirayama, K., Tanaka, K., Pointing, S.B., Spatafora, J.W., et al., 2009a. Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Stud. Mycol., 64(1):85–102. [doi:10.3114/sim.2009.64.04]

    PubMed  CAS  Google Scholar 

  • Zhang, Y., Wang, H.K., Fournier, J., Crous, P.W., Jeewon, R., Pointing, S.B., Hyde, K.D., 2009b. Towards a phylogenetic clarification of Lophiostoma/Massarina and morphologically similar genera in the Pleosporales. Fungal Divers., 38:225–251.

    Google Scholar 

  • Zumstein, E., Moletta, R., Godon, J.J., 2000. Examination of two years of community dynamics in an anaerobic bioreactor using fluorescence polymerase chain reaction (PCR) single-strand conformation polymorphism analysis. Environ. Microbiol., 2(1):69–78. [doi:10.1046/j.1462-2920.2000.00072.x]

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Ben Chobba.

Additional information

Project supported by EGIDE (No. 18470SA), CMCU (No. 08G908), and the Tunisian Ministry of Higher Education

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Chobba, I., Elleuch, A., Ayadi, I. et al. Fungal diversity in adult date palm (Phoenix dactylifera L.) revealed by culture-dependent and culture-independent approaches. J. Zhejiang Univ. Sci. B 14, 1084–1099 (2013). https://doi.org/10.1631/jzus.B1200300

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200300

Key words

CLC number

Navigation