Skip to main content
Log in

Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The Agrobacterium-mediated transformation system is the most commonly used method in soybean transformation. Screening of soybean genotypes favorable for Agrobacterium-infection and tissue regeneration is the most important step to establish an efficient genetic transformation system. In this study, twenty soybean genotypes that originated from different soybean production regions in China were screened for transient infection, regeneration capacity, and stable transgenic efficiency. Three genotypes, Yuechun 04-5, Yuechun 03-3, and Tianlong 1, showed comparable stable transgenic efficiencies with that of the previously reported American genotypes Williams 82 and Jack in our experimental system. For the Tianlong 1, the average stable transformation efficiency is 4.59%, higher than that of control genotypes (Jack and Williams 82), which is enough for further genomic research and genetic engineering. While polymerase chain reaction (PCR), LibertyLink strips, and β-glucuronidase (GUS) staining assays were used to detect the insertion and expression of the transgene, leaves painted with 135 mg/L Basta could efficiently identify the transformants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cheng, M., Lowe, B.A., Spencer, T.M., Ye, X.D., Armstrong, C.L., 2004. Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell. Dev. Biol.-Plant, 40(1):31–45. [doi:10.1079/IVP2003501]

    Article  Google Scholar 

  • Dai, S.H., Zheng, P., Marmey, P., Zhang, S.P., Tian, W.Z., Chen, S.Y., Beachy, R.N., Fauquet, C., 2001. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol. Breeding, 7(1):25–33. [doi:10.1023/A:1009687511633]

    Article  CAS  Google Scholar 

  • Donaldson, P.A., Simmonds, D.H., 2000. Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean. Plant Cell Rep., 19(5):478–484. [doi:10.1007/s002990050759]

    Article  CAS  Google Scholar 

  • Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull., 19:11–15.

    Google Scholar 

  • Edwards, K., Johnstone, C., Thompson, C., 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res., 19(6):1349. [doi:10.1093/nar/19.6.1349]

    Article  PubMed  CAS  Google Scholar 

  • Finer, J., McMullen, M., 1991. Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell. Dev. Biol.-Plant, 27(4):175–182. [doi:10.1007/bf02632213]

    Article  Google Scholar 

  • Frame, B.R., Shou, H.X., Chikwamba, R.K., Zhang, Z., Xiang, C., Fonger, T.M., Pegg, S.E.K., Li, B., Nettleton, D.S., Pei, D., et al., 2002. Agrobacterium tumefaciens-mediated transformation of maize embryos using standard binary vector system. Plant Physiol., 129(1):13–22. [doi:10.1104/pp.000653]

    Article  PubMed  CAS  Google Scholar 

  • Gamborg, O.L., Miller, R.A., Ojiama, K., 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res., 50(1):151–158. [doi:10.1016/0014-4827(68)90403-5]

    Article  PubMed  CAS  Google Scholar 

  • Gelvin, S.B., 2000. Agrobacterium and plant genes involved in T-DNA transfer and integration. Ann. Rev. Plant Physiol. Plant Mol. Biol., 51(1):223–256. [doi:10.1146/annurev.arplant.51.1.223]

    Article  CAS  Google Scholar 

  • Gelvin, S.B., 2003. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev., 67(1):16–37. [doi:10.1128/MMBR.67.1.16-37.2003]

    Article  PubMed  CAS  Google Scholar 

  • Hinchee, M.A.W., Conner-Ward, D.V., Newell, C.A., 1988. Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Nat. Biotechnol., 6(8):915–922. [doi:10.1038/nbt0888-915]

    Article  CAS  Google Scholar 

  • Hood, E.E., Helmer, G.L., Fraley, R.T., Chilton, M.D., 1986. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol., 168(3):1291–1301.

    PubMed  CAS  Google Scholar 

  • James, C., 2012. 2011 ISAAA report on global status of Biotech/GM crops. China Biotechnol., 32(1):1–14 (in Chinese).

    Google Scholar 

  • Jefferson, R.A., Kavanagh, T.A., Bevan, M.W., 1987. GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J., 6:3901–3907.

    PubMed  CAS  Google Scholar 

  • Liu, H.C., Wei, Z.M., 2005. Recent advances in soybean genetic transformation. J. Plant Physiol. Mol. Biol., 31(2): 126–134 (in Chinese).

    CAS  Google Scholar 

  • Ma, L., Zhou, L., Hua, M.F., Zhou, Z.J., Tang, G.X., Shen, Z.C., Shou, H.X., 2012. Establishment of methods to rapidly and precisely identify transgenic rice and soybean containing herbicide-resistant gene bar and EPSPS. J. Zhejiang Univ. (Agric. Life Sci.), 38(6):647–654 (in Chinese).

    CAS  Google Scholar 

  • McCabe, D.E., Swain, W.F., Martinell, B.J., Christou, P., 1988. Stable transformation of soybean (Glycine max) by particle acceleration. Nat. Biotechnol., 6(8):923–926. [doi:10.1038/nbt0888-923]

    Article  Google Scholar 

  • Meurer, C.A., Dinkins, R.D., Collins, G.B., 1998. Factors affecting soybean cotyledonary node transformation. Plant Cell Rep., 18(3–4):180–186. [doi:10.1007/s002990050553]

    Article  CAS  Google Scholar 

  • Monsanto Technology LLC, 2008. Preparation and Use of Plants Embryo Explants for Transformation. US Patent 112628 A2.

  • Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15(3):473–479. [doi:10.1111/j.1399-3054.1962.tb08052.x]

    Article  CAS  Google Scholar 

  • Mysore, K.S., Nam, J., Gelvin, S.B., 2000. An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. PNAS, 97(2):948–953. [doi:10.1073/pnas.97.2.948]

    Article  PubMed  CAS  Google Scholar 

  • Parrott, W.A., Hoffman, L.M., Hildebrand, D.F., Williams, E.G., Collins, G.B., 1989. Recovery of primary transformants of soybean. Plant Cell Rep., 7(8):615–617. [doi:10.1007/BF00272042]

    CAS  Google Scholar 

  • Paz, M.M., Shou, H.X., Guo, Z.B., Zhang, Z.Y., Banerjee, A.K., Wang, K., 2004. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica, 136(2): 167–179. [doi:10.1023/B:EUPH.0000030669.75809.dc]

    Article  CAS  Google Scholar 

  • Qiu, L.J., Wang, C.L., Zhou, G.A., Chen, S.Y., Chang, R.Z., 2007. Soybean molecular breeding. Sci. Agric. Sin., 40(11):2418–2436 (in Chinese).

    CAS  Google Scholar 

  • Shou, H.X., Frame, B.R., Whitham, S.A., Wang, K., 2004. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol. Breeding, 13(2):201–208. [doi:10.1023/B:MOLB.0000018767.64586.53]

    Article  CAS  Google Scholar 

  • Southern, E.M., 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol., 98(3):503–517. [doi:10.1016/S0022-2836(75)80083-0]

    Article  PubMed  CAS  Google Scholar 

  • Travella, S., Ross, S.M., Harden, J., Everett, C., Snape, J.W., Harwood, W.A., 2005. A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep., 23(12):780–789. [doi:10.1007/s00299-004-0892-x]

    Article  PubMed  CAS  Google Scholar 

  • Yi, H.C., Sardesai, N., Fujinuma, T., Chan, C.W., Veena, Gelvin, S.B., 2006. Constitutive expression exposes functional redundancy between the Arabidopsis histone H2A gene HTA1 and other H2A gene family members. Plant Cell, 18(7):1575–1589. [doi:10.1105/tpc.105.039719]

    Article  PubMed  CAS  Google Scholar 

  • Ying, S., He, X.W., Wang, X.R., Shou, H.X., 2008. Assessment of factors affecting the transformation efficiency of soybean cotyledonary-node Agrobacterium-mediated transformation system. Mol. Plant Breeding, 6(1):32–40 (in Chinese).

    CAS  Google Scholar 

  • Zheng, Y., He, X.W., Ying, Y.H., Lu, J.F., Gelvin, S.B., Shou, H.X., 2009. Expression of the Arabidopsis thaliana histone gene AtHTA1 enhances rice transformation efficiency. Mol. Plant, 2(4):832–837. [doi:10.1093/mp/ssp038]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-xia Shou.

Additional information

The two authors contributed equally to this work

Project supported by the Ministry of Agriculture of China (Nos. 2011ZX08004 and 2009ZX08010013) and the National Natural Science Foundation of China (No. 31172024)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Zy., Tian, Jl., Fu, Wz. et al. Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. J. Zhejiang Univ. Sci. B 14, 289–298 (2013). https://doi.org/10.1631/jzus.B1200278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200278

Key words

CLC number

Navigation