Skip to main content
Log in

Complete disassociation of adult pancreas into viable single cells through cold trypsin-EDTA digestion

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The in vitro isolation and analysis of pancreatic stem/progenitor cells are necessary for understanding their properties and function; however, the preparation of high-quality single-cell suspensions from adult pancreas is prerequisite. In this study, we applied a cold trypsin-ethylenediaminetetraacetic acid (EDTA) digestion method to disassociate adult mouse pancreata into single cells. The yield of single cells and the viability of the harvested cells were much higher than those obtained via the two commonly used warm digestion methods. Flow cytometric analysis showed that the ratio of ductal or BCRP1-positive cells in cell suspensions prepared through cold digestion was consistent with that found in vivo. Cell culture tests showed that pancreatic epithelial cells prepared by cold digestion maintained proliferative capacity comparable to those derived from warm collagenase digestion. These results indicate that cold trypsin-EDTA digestion can effectively disassociate an adult mouse pancreas into viable single cells with minimal cell loss, and can be used for the isolation and analysis of pancreatic stem/progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amsterdam, A., Jamieson, J.D., 1974. Studies on dispersed pancreatic exocrine cells. I. Dissociation technique and morphologic characteristics of separated cells. J. Cell Biol., 63(3):1037–1056. [doi:10.1083/jcb.63.3.1037]

    Article  PubMed  CAS  Google Scholar 

  • Baeyens, L., de Breuck, S., Lardon, J., Mfopou, J.K., Rooman, I., Bouwens, L., 2005. In vitro generation of insulin-producing β cells from adult exocrine pancreatic cells. Diabetologia, 48(1):49–57. [doi:10.1007/s00125-004-1606-1]

    Article  PubMed  CAS  Google Scholar 

  • Bonner-Weir, S., Toschi, E., Inada, A., Reitz, P., Fonseca, S.Y., Aye, T., Sharma, A., 2004. The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr. Diabetes, 5(S2):16–22. [doi:10.1111/j.1399-543X.2004.00075.x]

    Article  PubMed  Google Scholar 

  • Chung, C.H., Hao, E., Piran, R., Keinan, E., Levine, F., 2010. Pancreatic β-cell neogenesis by direct conversion from mature α-cells. Stem Cells, 28(9):1630–1638. [doi:10.1002/stem.482]

    Article  PubMed  CAS  Google Scholar 

  • Cole, R.J., Paul, J., 1966. The effects of erythropoietin on haem synthesis in mouse yolk sac and cultured foetal liver cells. J. Embryol. Exp. Morphol., 15(2):245–260.

    PubMed  CAS  Google Scholar 

  • Donath, M.Y., Halban, P.A., 2004. Decreased β-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia, 47(3):581–589. [doi:10.1007/s00125-004-1336-4]

    Article  PubMed  CAS  Google Scholar 

  • Dono, K., Gotoh, M., Fukuzaki, T., Ohzato, H., Kanai, T., Monden, M., Mori, T., 1992. Low-temperature collagenase digestion: an improved islet isolation method from cold preserved pancreas. Transplant. Proc., 24(4): 1511–1512.

    PubMed  CAS  Google Scholar 

  • Dono, K., Gotoh, M., Monden, M., Kanai, T., Fukuzaki, T., Mori, T., 1994. Low temperature collagenase digestion for islet isolation from 48-hour cold-preserved rat pancreas. Transplantation, 57(1):22–26. [doi:10.1097/00007890-199401000-00005]

    Article  PubMed  CAS  Google Scholar 

  • Dor, Y., Brown, J., Martinez, O.I., Melton, D.A., 2004. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature, 429(6987):41–46. [doi:10.1038/nature02520]

    Article  PubMed  CAS  Google Scholar 

  • Githens, S., 1988. The pancreatic duct cell: proliferative capabilities, specific characteristics, metaplasia, isolation, and culture. J. Pediatr. Gastroenterol. Nutr., 7(4): 486–506. [doi:10.1097/00005176-198807000-00004]

    Article  PubMed  CAS  Google Scholar 

  • Gross, J., Harper, E., Harris, E.D., McCroskery, P.A., Highberger, J.H., Corbett, C., Kang, A.H., 1974. Animal collagenases: specificity of action, and structures of the substrate cleavage site. Biochem. Biophys. Res. Commun., 61(2):605–612. [doi:10.1016/0006-291X(74)91000-6]

    Article  PubMed  CAS  Google Scholar 

  • Hao, E., Tyrberg, B., Itkin-Ansari, P., Lakey, J.R., Geron, I., Monosov, E.Z., Barcova, M., Mercola, M., Levine, F., 2006. β-cell differentiation from nonendocrine epithelial cells of the adult human pancreas. Nat. Med., 12(3):310–316. [doi:10.1038/nm1367]

    Article  PubMed  CAS  Google Scholar 

  • Inada, A., Nienaber, C., Katsuta, H., Fujitani, Y., Levine, J., Morita, R., Sharma, A., Bonner-Weir, S., 2008. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. PNAS, 105(50):19915–19919. [doi:10.1073/pnas.0805803105]

    Article  PubMed  CAS  Google Scholar 

  • Ji, B., Gaiser, S., Chen, X., Ernst, S.A., Logsdon, C.D., 2009. Intracellular trypsin induces pancreatic acinar cell death but not NF-κB activation. J. Biol. Chem., 284(26): 17488–17498. [doi:10.1074/jbc.M109.005520]

    Article  PubMed  CAS  Google Scholar 

  • Kayali, A.G., van Gunst, K., Campbell, I.L., Stotland, A., Kritzik, M., Liu, G., Flodstrom-Tullberg, M., Zhang, Y.Q., Sarvetnick, N., 2003. The stromal cell-derived factor-1α/CXCR4 ligand-receptor axis is critical for progenitor survival and migration in the pancreas. J. Cell Biol., 163(4):859–869. [doi:10.1083/jcb.200304153]

    Article  PubMed  CAS  Google Scholar 

  • Kikugawa, R., Katsuta, H., Akashi, T., Yatoh, S., Weir, G.C., Sharma, A., Bonner-Weir, S., 2009. Differentiation of COPAS-sorted non-endocrine pancreatic cells into insulin-positive cells in the mouse. Diabetologia, 52(4):645–652. [doi:10.1007/s00125-009-1260-8]

    Article  PubMed  CAS  Google Scholar 

  • McKeehan, W.L., 1977. The effect of temperature during trypsin treatment on viability and multiplication potential of single normal human and chicken fibroblasts. Cell Biol. Int. Rep., 1(4):335–343. [doi:10.1016/0309-1651(77)90063-7]

    Article  PubMed  CAS  Google Scholar 

  • Oliver, C., 1980. Isolation and maintenance of differentiated exocrine gland acinar cells in vitro. In Vitro, 16(4): 297–305. [doi:10.1007/BF02618335]

    Article  PubMed  CAS  Google Scholar 

  • Poliakova, L., Pirone, A., Farese, A., MacVittie, T., Farney, A., 2004. Presence of nonhematopoietic side population cells in the adult human and nonhuman primate pancreas. Transplant. Proc., 36(4):1166–1168. [doi:10.1016/j.transproceed.2004.04.058]

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, C.J., 2005. Type 2 diabetes-a matter of β-cell life and death? Science, 307(5708):380–384. [doi:10.1126/science.1104345]

    Article  PubMed  CAS  Google Scholar 

  • Seglen, P.O., 1976. Preparation of isolated rat liver cells. Methods Cell Biol., 13:29–83. [doi:10.1016/S0091-679X(08)61797-5]

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, A.M., Lakey, J.R., Ryan, E.A., Korbutt, G.S., Toth, E., Warnock, G.L., Kneteman, N.M., Rajotte, R.V., 2000. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med., 343(4):230–238. [doi:10.1056/NEJM200007273430401]

    Article  PubMed  CAS  Google Scholar 

  • Stock, P.G., Bluestone, J.A., 2004. β-cell replacement for type I diabetes. Annu. Rev. Med., 55(1):133–156. [doi:10.1146/annurev.med.55.091902.103539]

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, A., Nakauchi, H., Taniguchi, H., 2004. Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting. Diabetes, 53(8):2143–2152. [doi:10.2337/diabetes.53.8.2143]

    Article  PubMed  CAS  Google Scholar 

  • Xu, X., D’Hoker, J., Stange, G., Bonne, S., de Leu, N., Xiao, X., van de Casteele, M., Mellitzer, G., Ling, Z., Pipeleers, D., et al., 2008. β cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell, 132(2):197–207. [doi:10.1016/j.cell.2007.12.015]

    Article  PubMed  CAS  Google Scholar 

  • Zhou, S., Schuetz, J.D., Bunting, K.D., Colapietro, A.M., Sampath, J., Morris, J.J., Lagutina, I., Grosveld, G.C., Osawa, M., Nakauchi, H., et al., 2001. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med., 7(9):1028–1034. [doi:10.1038/nm0901-1028]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Tai or Chun-bo Teng.

Additional information

The two authors contributed equally to this work

Project supported by the National Natural Science Foundation of China (No. 31272520) and the Special Fund for Scientific and Technological Innovation Talents in Harbin, China (No. 2012RFXXS048)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Peng, Sy., Zhang, Zw. et al. Complete disassociation of adult pancreas into viable single cells through cold trypsin-EDTA digestion. J. Zhejiang Univ. Sci. B 14, 596–603 (2013). https://doi.org/10.1631/jzus.B1200226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200226

Key words

CLC number

Navigation