Skip to main content
Log in

Variation in glucosinolates in pak choi cultivars and various organs at different stages of vegetative growth during the harvest period

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Glucosinolates (GSs) play an important role in plant defense systems and human nutrition. We investigated the content and composition of GSs in the shoots and roots of seven cultivars of pak choi. We found that ‘Si Yue Man’ had the highest total and aliphatic GS contents in the shoots and the highest benzenic GS content in the roots, ‘Shanghai Qing’ contained the highest amounts of benzenic and total GS contents in the roots, while ‘Nanjing Zhong Gan Bai’ had the lowest benzenic, indole, and total GS contents in both the shoots and roots. Therefore, the ‘Si Yue Man’ cultivar appears to be a good candidate for future breeding. Variation between the shoots and roots was also examined, and a significant correlation among the total, aliphatic, and some individual GSs was found, which is of value in agricultural breeding. GS concentrations of the leaf, petiole, and root increased dramatically during the period of rapid growth of the dry matter of the plant 10 to 20 d after transplantation, reaching peak values on Day 20 and decreasing on Day 25. We conclude that the pak choi should be harvested and consumed from 20 to 25 d after transplantation to take advantages of the high GS content in the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agerbirk, N., Olsen, C.E., 2012. Glucosinolate structures in evolution. Phytochemistry, 77:16–45. [doi:10.1016/j.phytochem.2012.02.005]

    Article  PubMed  CAS  Google Scholar 

  • Bellostas, N., Sørensen, J.C., Sørensen, H., 2004. Qualitative and quantitative evaluation of glucosinolates in cruciferous plant during their life cycles. Agroindustria, 3(3):5–10.

    Google Scholar 

  • Brown, P.D., Tokuhisa, J.G., Reichelt, M., Gershenzon, J., 2003. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry, 62(3):471–481. [doi:10.1016/S0031-9422(02)00549-6]

    Article  PubMed  CAS  Google Scholar 

  • Brudenell, A.J.P., Griffiths, H., Rossiter, J.T., Baker, D.A., 1999. The phloem mobility of glucosinolates. J. Exp. Bot., 50(335):745–756. [doi:10.1093/jxb/50.335.745]

    CAS  Google Scholar 

  • Castro, A., Aires, A., Rosa, E., Bloem, E., Stulen, I., Kok, L.D., 2004. Distribution of glucosinolates in Brassica oleracea cultivars. Phyt. Ann. Rei Bot., 44(1):133–143.

    CAS  Google Scholar 

  • Chen, S., Andreasson, E., 2001. Update on glucosinolate metabolism and transport. Plant Physiol. Biochem., 39(9):743–758. [doi:10.1016/S0981-9428(01)01301-8]

    Article  CAS  Google Scholar 

  • Chen, S.X., Petersen, B.L., Olsen, C.E., Schulz, A., Halkier, B.A., 2001. Long-distance phloem transport of glucosinolates in Arabidopsis. Plant Physiol., 127(1):194–201. [doi:10.1104/pp.127.1.194]

    Article  PubMed  CAS  Google Scholar 

  • Chen, X.J., Zhu, Z.J., Gerendas, J., Zimmermann, N., 2008. Glucosinolates in Chinese Brassica campestris vegetables: Chinese cabbage, purple cai-tai, choysum, pakchoi, and turnip. Hortscience, 43(2):571–574.

    Google Scholar 

  • Clossais-Besnard, N., Larher, F., 1991. Physiological role of glucosinolates in Brassica napus. Concentration and distribution pattern of glucosinolate among plant organs during a complete life cycle. J. Sci. Food Agric., 56(1): 25–38. [doi:10.1002/jsfa.2740560104]

    Article  CAS  Google Scholar 

  • European Community, 1990. Determination of the oilseed glucosinolate content by HPLC. Off. J. Eur. Commun., 170:27–34.

    Google Scholar 

  • Fahey, J.W., Zalcmann, A.T., Talalay, P., 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56(1):5–51. [doi:10.1016/S0031-9422(00)00316-2]

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, D.W., Birch, A.N.E., Hillman, J.R., 1998. Antinutritional compounds in the Brassicaceae: analysis, biosynthesis, chemistry and dietary effects. J. Hort. Sci. Biotechnol., 73(1):1–18.

    Article  CAS  Google Scholar 

  • Grubb, C.D., Abel, S., 2006. Glucosinolate metabolism and its control. Trends Plant Sci., 11(2):89–100. [doi:10.1016/j.tplants.2005.12.006]

    Article  PubMed  CAS  Google Scholar 

  • Halkier, B.A., Gershenzon, J., 2006. Biology and biochemistry of glucosinolates. Ann. Rev. Plant Biol., 57(1):303–333. [doi:10.1146/annurev.arplant.57.032905.105228]

    Article  CAS  Google Scholar 

  • Hanson, P., Yang, R., Chang, L., Ledesma, L., Ledesma, D., 2009. Contents of carotenoids, ascorbic acid, minerals and total glucosinolates in leafy brassica pakchoi (Brassica rapa L. chinensis) as affected by season and variety. J. Sci. Food Agric., 89(5):906–914. [doi:10.1002/jsfa.3533]

    Article  CAS  Google Scholar 

  • He, H., Fingerling, G., Schnitzler, W.H., 2000. Glucosinolate contents and patterns in different organs of Chinese cabbages, Chinese kale (Brassica alboglabra bailey) and choy sum (Brassica campestris L. ssp chinensis var. utilis Tsen et Lee). Angewandte Botanik, 74(1–2):21–25.

    CAS  Google Scholar 

  • Hecht, S.S., 2000. Inhibition of carcinogenesis by isothiocyanates. Drug Metab. Rev., 32(3–4):395–411. [doi:10.1081/DMR-100102342]

    Article  PubMed  CAS  Google Scholar 

  • Holst, B., Williamson, G., 2004. A critical review of the bioavailability of glucosinolates and related compounds. Nat. Prod. Rep., 21(3):425–447. [doi:10.1039/b204039p]

    Article  PubMed  CAS  Google Scholar 

  • Kabouw, P., Biere, A., Putten, W.H., van Dam, N.M., 2010. Intra-specific differences in root and shoot glucosinolate profiles among white cabbage (Brassica oleracea var. capitata) cultivars. J. Agric. Food Chem., 58(1):411–417. [doi:10.1021/jf902835k]

    Article  CAS  Google Scholar 

  • Kim, J.K., Sang, M.C., Kim, S.J., Lee, D.J., Lee, S.Y., Lim, S.H., Sun, H.H., Kweon, S.J., Cho, S.H., 2010. Variation of glucosinolates in vegetable crops of Brassica rapa L. ssp. Pekinensis. Food Chem., 119(1):423–428. [doi:10.1016/j.foodchem.2009.08.051]

    Article  CAS  Google Scholar 

  • Kim, Y.S., Milner, J.A., 2005. Targets for indole-3-carbinol in cancer prevention. J. Nutr. Biochem., 16(2):65–73. [doi:10.1016/j.jnutbio.2004.10.007]

    Article  PubMed  CAS  Google Scholar 

  • Krumbein, A., Schonhof, I., Schreiner, M., 2005. Composition and contents of phytochemicals (glucosinolates, carotenoids and chlorophylls) and ascorbic acid in selected Brassica species (B. juncea, B. rapa subsp. nipposinica var. chinoleifera, B. rapa subsp. Chinensis and B. rapa subsp. rapa). J. Appl. Bot. Food Qual., 79(3):168–174.

    CAS  Google Scholar 

  • Latte, K.P., Appel, K.E., Lampen, A., 2011. Health benefits and possible risks of broccoli—an overview. Food Chem. Toxicol., 49(12):3287–3309. [doi:10.1016/j.fct.2011.08.019]

    Article  PubMed  CAS  Google Scholar 

  • Malik, M.S., Riley, M.B., Norsworthy, J.K., Bridges, W.J., 2010. Glucosinolate profile variation of growth stages of wild radish (Raphanus raphanistrum). J. Agric. Food Chem., 58(6):3309–3315. [doi:10.1021/jf100258c]

    Article  PubMed  CAS  Google Scholar 

  • Merritt, S.Z., 1996. Within-plant variation in concentrations of amino acids, sugar, and sinigrin in phloem sap of black mustard, Brassica nigra (L) Koch (Cruciferae). J. Chem. Ecol., 22(6):1133–1145. [doi:10.1007/BF02027950]

    Article  CAS  Google Scholar 

  • Mithen, R.F., Dekker, M., Verkerk, R., Rabot, S., Johnson, I.T., 2000. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J. Sci. Food Agric., 80(7):967–984. [doi:10.1002/(SICI)1097-0010(20000515)80:7〈967::AID-JSFA597〉3.3.CO;2-M]

    Article  CAS  Google Scholar 

  • Nastruzzi, C., Cortesi, R., Esposito E., Menegatti, E., Leoni, O., Iori, R., Palmieri, S., 1996. In vitro cytotoxic activity of some glucosinolate-derived products generated by myrosinase hydrolysis. J. Agric. Food Chem., 44(4):1014–1021. [doi:10.1021/jf9503523]

    Article  CAS  Google Scholar 

  • Padilla, G., Cartea, M.E., Velasco, P., Haro, A., Ordás, A., 2007. Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry, 68(4):536–545. [doi:10.1016/j.phytochem.2006.11.017]

    Article  PubMed  CAS  Google Scholar 

  • Petersen, B.L., Chen, S., Hansen, C.H., Olsen, C.E., Halkier, B.A., 2002. Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta, 214(4):562–571. [doi:10.1007/s004250100659]

    Article  PubMed  CAS  Google Scholar 

  • Podsedek, A., 2007. Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT-Food Sci. Technol., 40(1):1–11. [doi:10.1016/j.lwt. 2005.07.023]

    Article  CAS  Google Scholar 

  • Potter, M.J., Vanstone, V.A., Davies, K.A., Rathjen, A.J., 2000. Breeding to increase the concentration of 2-phenylethyl glucosinolate in the roots of Brassica napus. J. Chem. Ecol., 26(8):1811–1820. [doi:10.1023/A:1005588405774]

    Article  CAS  Google Scholar 

  • Rosa, E.A.S., Heaney, R.K., Portas, C.A.M., Fenwick, G.R., 1996. Changes in glucosinolate concentrations in Brassica crops (B. oleracea and B. napus) throughout growing seasons. J. Sci. Food Agric., 71(2):237–244. [doi:10.1002/(SICI)1097-0010(199606)71:2〈237::AID-JSFA574〉3.0.CO;2-P]

    Article  CAS  Google Scholar 

  • Schonhof, I., Krumbein, A., Brückner, B., 2004. Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Food, 48(1):25–33. [doi:10.1002/food.200300329]

    PubMed  CAS  Google Scholar 

  • Smith, T.K., Lund, E.K., Parker, M.L., Clarke, R.G., Johnson, I.T., 2004. Allyl-isothiocyanate causes mitotic block, loss of cell adhesion and disrupted cytoskeletal structure in HT29 cells. Carcinogenesis, 25(8):1409–1415. [doi:10.1093/carcin/bgh149]

    Article  PubMed  CAS  Google Scholar 

  • Smith, T.K., Lund, E.K., Clarke, R.G., Bennett, R.N., Johnson, I.T., 2005. Effects of Brussels sprout juice on the cell cycle and adhesion of human colorectal carcinoma cells (HT29) in vitro. J. Agric. Food Chem., 53(10):3895–3901. [doi:10.1021/jf048025v]

    Article  PubMed  CAS  Google Scholar 

  • Tay, D.C.S., Toxopeus, H., 1993. Brassica rapa L. cv. Group Pak Choi in Plant Resources South-East Asia. Number 8: Vegetables. Pudoc Scientific Publishers, Wageningen, p.130–134.

    Google Scholar 

  • Traka, M., Mithen, R., 2009. Glucosinolates, isothiocyanates and human health. Phytochem. Rev., 8(1):269–282. [doi:10.1007/s11101-008-9103-7]

    Article  CAS  Google Scholar 

  • van Dam, N.M., Tytgat, T.O.G., Kirkegaard, J.A., 2009. Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem. Rev., 8(1):171–186. [doi:10.1007/s11101-008-9101-9]

    Article  CAS  Google Scholar 

  • Velasco, P., Cartea, M.E., Gonzalez, C., Vilar, M., Ordas, A., 2007. Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group). J. Agric. Food Chem., 55(3):955–962. [doi:10.1021/jf0624897]

    Article  PubMed  CAS  Google Scholar 

  • Verkerk, R., Schreiner, M., Krumbein, A., Ciska, E., Holst, B., Rowland, I., de Schrijver, R., Hansen, M., Gerhauser, C., Mithen, R., et al., 2009. Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol. Nutr. Food Res., 53(2):S219–S265. [doi:10.1002/mnfr.200800065]

    Article  PubMed  Google Scholar 

  • Vierheilig, H., Bennett, R., Kiddle, G., Kaldorf, M., Ludwig-Muller, J., 2000. Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate-containing plant species. New Phytol., 146(2):343–352. [doi:10.1046/j.1469-8137.2000.00642.x]

    Article  CAS  Google Scholar 

  • Wittstock, U., Gershenzon, J., 2002. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol., 5(4):300–307. [doi:10.1016/S1369-5266(02)00264-9]

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Zhu, Z.J., Gerendás, J., 2009. Interactive effects of phosphorus supply and light intensity on glucosinolates in pakchoi (Brassica campestris L. ssp. chinensis var. communis). Plant Soil, 323(1–2):323–333. [doi:10.1007/s11104-009-9940-1]

    CAS  Google Scholar 

  • Zangerl, A.R., Bazzaz, F.A., 1993. Theory and Pattern in Plant Defense Allocation. In: Fritz, R.S., Simms, E.L. (Eds.), Plant Resistance to Herbivores and Pathogens. University of Chicago Press, Chicago, p.363–391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-jun Zhu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 30871718 and 31201620), the Zhejiang Provincial Natural Science Foundation of China (No. R3080360), and the Fund for Zhejiang Higher School Innovative Research Team (No. T200916), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, B., Yang, J. & Zhu, Zj. Variation in glucosinolates in pak choi cultivars and various organs at different stages of vegetative growth during the harvest period. J. Zhejiang Univ. Sci. B 14, 309–317 (2013). https://doi.org/10.1631/jzus.B1200213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200213

Key words

CLC number

Navigation