Skip to main content
Log in

Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T a) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T a estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T a based on MODIS land surface temperature (LST) data. The verification results of maximum T a, minimum T a, GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001–2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boschetti, M., Stroppiana, D., Brivio, P.A., Bocchi, S., 2009. Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int. J. Remote Sens., 30(18):4643–4662. [doi:10.1080/01431160802632249]

    Article  Google Scholar 

  • Coops, N., Duro, D., Wulder, M., Han, T., 2007. Estimating afternoon MODIS land surface temperatures (LST) based on morning MODIS overpass, location and elevation information. Int. J. Remote Sens., 28(10):2391–2396. [doi:10.1080/01431160701294653]

    Article  Google Scholar 

  • Cristóbal, J., Ninyerola, M., Pons, X., 2008. Modeling air temperature through a combination of remote sensing and GIS data. J. Geophys. Res., 113(D13):D13106. [doi:10.1029/2007JD009318]

    Article  Google Scholar 

  • Crosson, W.L., Al-Hamdan, M.Z., Hemmings, S.N.J., Wade, G.M., 2012. A daily merged MODIS Aqua-Terra land surface temperature data set for the conterminous United States. Remote Sens. Environ., 119:315–324. [doi:10.1016/j.rse.2011.12.019]

    Article  Google Scholar 

  • de Beurs, K.M., Henebry, G.M., 2004. Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ., 89(4):497–509. [doi:10.1016/j.rse.2003.11.006]

    Article  Google Scholar 

  • de Beurs, K.M., Henebry, G.M., 2010. Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology. Phenological Research: Methods for Environmental and Climate Change Analysis. London, Springer, p.177–208. [doi:10.1007/978-90-481-3335-2_9]

  • Florio, E., Lele, S., Chang, Y., Sterner, R., Glass, G., 2004. Integrating AVHRR satellite data and NOAA ground observations to predict surface air temperature: a statistical approach. Int. J. Remote Sens., 25(15):2979–2994. [doi:10.1080/01431160310001624593]

    Article  Google Scholar 

  • Gordon, R., Bootsma, A., 1993. Analyses of growing degree-days for agriculture in Atlantic Canada. Clim. Res., 3:169–176. [doi:10.3354/cr003169]

    Article  Google Scholar 

  • Hassan, Q.K., Bourque, C., Meng, F.R., Richards, W., 2007a. Spatial mapping of growing degree days: an application of MODIS-based surface temperatures and enhanced vegetation index. J. Appl. Remote Sens., 1(1):013511. [doi:10.1117/1.2740040]

    Article  Google Scholar 

  • Hassan, Q.K., Bourque, C.P.A., Meng, F.R., 2007b. Application of Landsat-7 ETM+ and MODIS products in mapping seasonal accumulation of growing degree days at an enhanced resolution. J. Appl. Remote Sens., 1(1): 013539. [doi:10.1117/1.2800284]

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83(1–2):195–213. [doi:10.1016/S0034-4257(02)00096-2]

    Article  Google Scholar 

  • Islam, M., Sikder, S., 2011. Phenology and degree days of rice cultivars under organic culture. Bangladesh J. Bot., 40(2):149–153.

    Google Scholar 

  • Ke, L., Wang, Z., Song, C., Lu, Z., 2011. Reconstruction of MODIS LST time series and comparison with land surface temperature (T) among observation stations in the Northeast Qinghai-Tibet plateau. Prog. Geogr., 30(7): 819–826 (in Chinese).

    Google Scholar 

  • Li, F., Wang, C., Zhao, J., Zheng, J., 2010. The spatialization of multi-year average accumulated temperature in China. J. Nat. Resour., 25(5):778–783 (in Chinese).

    Google Scholar 

  • Li, J., Wang, X., Ma, W., Zhang, H., 2009. Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area, China. Ecol. Complex, 6(4):413–420. [doi:10.1016/j.ecocom.2009.02.002]

    Article  Google Scholar 

  • Liu, J., Wang, Z., Chen, M., Shi, K., Liang, T., Zhang, B., Zhou, F., Chang, J., 2011. Temporal and spatial variation characteristics of effective accumulated temperature in Northeast China during 1951–2007. J. Anhui Agric. Sci., 39(25):15655–15656, 15680 (in Chinese).

    Google Scholar 

  • Lu, L., Venus, V., Skidmore, A., Wang, T., Luo, G., 2011. Estimating land-surface temperature under clouds using MSG/SEVIRI observations. Int. J. Appl. Earth Obs. Geoinform., 13(2):265–276. [doi:10.1016/j.jag.2010.12.007]

    Article  Google Scholar 

  • McMaster, G.S., Wilhelm, W., 1997. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol., 87(4):291–300. [doi:10.1016/S0168-1923(97)00027-0]

    Article  Google Scholar 

  • Morrison, M., McVetty, P., Shaykewich, C., 1989. The determination and verification of a baseline temperature for the growth of Westar summer rape. Can. J. Plant. Sci., 69(2):455–464. [doi:10.4141/cjps89-057]

    Article  Google Scholar 

  • Mostovoy, G.V., King, R.L., Reddy, K.R., Kakani, V.G., Filippova, M.G., 2006. Statistical estimation of daily maximum and minimum air temperatures from MODIS LST data over the state of Mississippi. GISci. Remote Sens., 43(1):78–110. [doi:10.2747/1548-1603.43.1.78]

    Article  Google Scholar 

  • Neteler, M., 2010. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sens., 2(1):333–351 [doi:10.3390/rs1020333]

    Article  Google Scholar 

  • Sarma, A., Kumar, T.V.L., Koteswararao, K., 2008. Development of an agroclimatic model for the estimation of rice yield. J. Ind. Geophys. Union, 12(2):89–96.

    Google Scholar 

  • Shen, S., Leptoukh, G.G., 2011. Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature. Environ. Res. Lett., 6(4):045206. [doi:10.1088/1748-9326/6/4/045206]

    Article  Google Scholar 

  • Sun, H., Huang, J., Huete, A.R., Peng, D., Zhang, F., 2009. Mapping paddy rice with multi-date moderate-resolution imaging spectroradiometer (MODIS) data in China. J. Zhejiang Univ.-Sci. A (Appl. Phys. & Eng.), 10(10):1509–1522. [doi:10.1631/jzus.A0820536]

    Article  Google Scholar 

  • Teal, R., Girma, B., Freeman, K., Arnall, K., Walsh, D.O., Raun, W., 2006. In-season prediction of corn grain yield potential using normalized difference vegetation index. Agron. J., 98(6):1488. [doi:10.2134/agronj2006.0103]

    Article  Google Scholar 

  • Vancutsem, C., Ceccato, P., Dinku, T., Connor, S.J., 2010. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ., 114(2):449–465. [doi:10.1016/j.rse.2009.10.002]

    Article  Google Scholar 

  • Vina, A., Gitelson, A.A., Rundquist, D.C., Keydan, G.P., Leavitt, B., Schepers, J., 2004. Monitoring maize (Zea mays L.) phenology with remote sensing. Agron. J., 96(4):1139–1147. [doi:10.2134/agronj2004.1139]

    Article  Google Scholar 

  • Wan, Z., 2007. Collection-5 MODIS Land Surface Temperature Products Users’ Guide. ICESS, University of California, Santa Barbara.

    Google Scholar 

  • Wang, J., Price, K., Rich, P., 2001. Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. J. Appl. Remote Sens., 22(18):3827–3844. [doi:10.1080/01431160010007033]

    Article  Google Scholar 

  • Yang, W., Yang, L., Merchant, J., 1997. An assessment of AVHRR/NDVI-ecoclimatological relations in Nebraska, USA. J. Appl. Remote Sens., 18(10):2161–2180. [doi:10.1080/014311697217819]

    Article  Google Scholar 

  • Ye, Q., Yang, X., Li, Y., Dai, S., Xiao, J., 2011. Changes of China agricultural climate resources under the background of climate change. VIII. Change characteristics of heat resources during the growth period of double cropping rice in Jiangxi Province. Chin. J. Appl. Ecol., 22(8):2021–2030 (in Chinese).

    Google Scholar 

  • Zhang, W., Huang, Y., Yu, Y., Sun, W., 2011. Empirical models for estimating daily maximum, minimum and mean air temperatures with MODIS land surface temperatures. Int. J. Remote Sens., 32(24):9415–9440. [doi:10.1080/01431 161.2011.560622]

    Article  CAS  Google Scholar 

  • Zorer, R., Rocchini, D., Delucchi, L., Zottele, F., Meggio, F., Neteler, M., 2011. Use of Multi-annual MODIS Land Surface Temperature Data for the Characterization of the Heat Requirements for Grapevine Varieties. 2011 6th International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Multi-Temp 2011-Proceedings. IEEE Computer Society, Trento, Italy, p.225–228. [doi:10.1109/Multi-Temp.2011.6005089]

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-wen Zhang or Jing-feng Huang.

Additional information

Project supported by the National Key Technology R&D Program of China (No. 2012BAH29B02) and the PhD Programs Foundation of Ministry of Education of China (No. 200100101110035)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Lw., Huang, Jf., Guo, Rf. et al. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data. J. Zhejiang Univ. Sci. B 14, 144–161 (2013). https://doi.org/10.1631/jzus.B1200169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200169

Key words

CLC number

Navigation